|
import gradio as gr |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import ( |
|
Wav2Vec2ForCTC, |
|
Wav2Vec2Processor, |
|
AutoTokenizer, |
|
AutoModelWithLMHead |
|
) |
|
import torch |
|
import re |
|
import sys |
|
import soundfile as sf |
|
|
|
|
|
|
|
|
|
model_name = "voidful/wav2vec2-xlsr-multilingual-56" |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
processor_name = "voidful/wav2vec2-xlsr-multilingual-56" |
|
|
|
import pickle |
|
with open("lang_ids.pk", 'rb') as output: |
|
lang_ids = pickle.load(output) |
|
|
|
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) |
|
processor = Wav2Vec2Processor.from_pretrained(processor_name) |
|
|
|
model.eval() |
|
|
|
def load_file_to_data(file,sampling_rate=16_000): |
|
batch = {} |
|
speech, _ = torchaudio.load(file) |
|
if sampling_rate != '16_000' or sampling_rate != '16000': |
|
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16_000) |
|
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() |
|
batch["sampling_rate"] = resampler.new_freq |
|
else: |
|
batch["speech"] = speech.squeeze(0).numpy() |
|
batch["sampling_rate"] = '16000' |
|
return batch |
|
|
|
|
|
def predict(data): |
|
data=load_file_to_data(data,sampling_rate=16_000) |
|
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt") |
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
decoded_results = [] |
|
for logit in logits: |
|
pred_ids = torch.argmax(logit, dim=-1) |
|
mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size()) |
|
vocab_size = logit.size()[-1] |
|
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) |
|
comb_pred_ids = torch.argmax(voice_prob, dim=-1) |
|
decoded_results.append(processor.decode(comb_pred_ids)) |
|
|
|
return decoded_results |
|
|
|
def predict_lang_specific(data,lang_code): |
|
data=load_file_to_data(data,sampling_rate=16_000) |
|
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt") |
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
decoded_results = [] |
|
for logit in logits: |
|
pred_ids = torch.argmax(logit, dim=-1) |
|
mask = ~pred_ids.eq(processor.tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size()) |
|
vocab_size = logit.size()[-1] |
|
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1) |
|
filtered_input = pred_ids[pred_ids!=processor.tokenizer.pad_token_id].view(1,-1).to(device) |
|
if len(filtered_input[0]) == 0: |
|
decoded_results.append("") |
|
else: |
|
lang_mask = torch.empty(voice_prob.shape[-1]).fill_(0) |
|
lang_index = torch.tensor(sorted(lang_ids[lang_code])) |
|
lang_mask.index_fill_(0, lang_index, 1) |
|
lang_mask = lang_mask.to(device) |
|
comb_pred_ids = torch.argmax(lang_mask*voice_prob, dim=-1) |
|
decoded_results.append(processor.decode(comb_pred_ids)) |
|
|
|
return decoded_results |
|
|
|
'''def recognition(audio_file): |
|
print("audio_file", audio_file.name) |
|
speech, rate = sp.load_speech_with_file(audio_file.name) |
|
|
|
result = sp.predict_audio_file(speech) |
|
print(result) |
|
|
|
return result |
|
''' |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("multilingual Speech Recognition") |
|
with gr.Tab("Auto"): |
|
gr.Markdown("automatically detects your language") |
|
inputs_speech =gr.Audio(source="upload", type="filepath", optional=True) |
|
output_transcribe = gr.HTML(label="") |
|
transcribe_audio= gr.Button("Submit") |
|
with gr.Tab("manual"): |
|
gr.Markdown("set your speech language") |
|
inputs_speech1 =[ |
|
gr.Audio(source="upload", type="filepath"), |
|
gr.Dropdown(choices=["ar","as","br","ca","cnh","cs","cv","cy","de","dv","el","en","eo","es","et","eu","fa","fi","fr","fy-NL","ga-IE","hi","hsb","hu","ia","id","it","ja","ka","ky","lg","lt","lv","mn","mt","nl","or","pa-IN","pl","pt","rm-sursilv","rm-vallader","ro","ru","sah","sl","sv-SE","ta","th","tr","tt","uk","vi","zh-CN","zh-HK","zh-TW"] |
|
,value="fa",label="language code") |
|
] |
|
output_transcribe1 = gr.Textbox(label="output") |
|
transcribe_audio1= gr.Button("Submit") |
|
'''with gr.Tab("Auto1"): |
|
gr.Markdown("automatically detects your language") |
|
inputs_speech2 = gr.Audio(label="Input Audio", type="file") |
|
output_transcribe2 = gr.Textbox() |
|
transcribe_audio2= gr.Button("Submit")''' |
|
transcribe_audio.click(fn=predict, |
|
inputs=inputs_speech, |
|
outputs=output_transcribe) |
|
|
|
transcribe_audio1.click(fn=predict_lang_specific, |
|
inputs=inputs_speech1 , |
|
outputs=output_transcribe1 ) |
|
|
|
'''transcribe_audio2.click(fn=recognition, |
|
inputs=inputs_speech2 , |
|
outputs=output_transcribe2 )''' |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|