Kamtera's picture
Update app.py
3715573
raw
history blame
5.59 kB
import gradio as gr
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
AutoTokenizer,
AutoModelWithLMHead
)
import torch
import re
import sys
import soundfile as sf
model_name = "voidful/wav2vec2-xlsr-multilingual-56"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor_name = "voidful/wav2vec2-xlsr-multilingual-56"
import pickle
with open("lang_ids.pk", 'rb') as output:
lang_ids = pickle.load(output)
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(processor_name)
model.eval()
def load_file_to_data(file,sampling_rate=16_000):
batch = {}
speech, _ = torchaudio.load(file)
if sampling_rate != '16_000' or sampling_rate != '16000':
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16_000)
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
else:
batch["speech"] = speech.squeeze(0).numpy()
batch["sampling_rate"] = '16000'
return batch
def predict(data):
data=load_file_to_data(data,sampling_rate=16_000)
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
decoded_results = []
for logit in logits:
pred_ids = torch.argmax(logit, dim=-1)
mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size())
vocab_size = logit.size()[-1]
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
comb_pred_ids = torch.argmax(voice_prob, dim=-1)
decoded_results.append(processor.decode(comb_pred_ids))
return decoded_results
def predict_lang_specific(data,lang_code):
data=load_file_to_data(data,sampling_rate=16_000)
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
decoded_results = []
for logit in logits:
pred_ids = torch.argmax(logit, dim=-1)
mask = ~pred_ids.eq(processor.tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size())
vocab_size = logit.size()[-1]
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
filtered_input = pred_ids[pred_ids!=processor.tokenizer.pad_token_id].view(1,-1).to(device)
if len(filtered_input[0]) == 0:
decoded_results.append("")
else:
lang_mask = torch.empty(voice_prob.shape[-1]).fill_(0)
lang_index = torch.tensor(sorted(lang_ids[lang_code]))
lang_mask.index_fill_(0, lang_index, 1)
lang_mask = lang_mask.to(device)
comb_pred_ids = torch.argmax(lang_mask*voice_prob, dim=-1)
decoded_results.append(processor.decode(comb_pred_ids))
return decoded_results
'''def recognition(audio_file):
print("audio_file", audio_file.name)
speech, rate = sp.load_speech_with_file(audio_file.name)
result = sp.predict_audio_file(speech)
print(result)
return result
'''
#predict(load_file_to_data('audio file path',sampling_rate=16_000)) # beware of the audio file sampling rate
#predict_lang_specific(load_file_to_data('audio file path',sampling_rate=16_000),'en') # beware of the audio file sampling rate
with gr.Blocks() as demo:
gr.Markdown("multilingual Speech Recognition")
with gr.Tab("Auto"):
gr.Markdown("automatically detects your language")
inputs_speech =gr.Audio(source="upload", type="filepath", optional=True)
output_transcribe = gr.HTML(label="")
transcribe_audio= gr.Button("Submit")
with gr.Tab("manual"):
gr.Markdown("set your speech language")
inputs_speech1 =[
gr.Audio(source="upload", type="filepath"),
gr.Dropdown(choices=["ar","as","br","ca","cnh","cs","cv","cy","de","dv","el","en","eo","es","et","eu","fa","fi","fr","fy-NL","ga-IE","hi","hsb","hu","ia","id","it","ja","ka","ky","lg","lt","lv","mn","mt","nl","or","pa-IN","pl","pt","rm-sursilv","rm-vallader","ro","ru","sah","sl","sv-SE","ta","th","tr","tt","uk","vi","zh-CN","zh-HK","zh-TW"]
,value="fa",label="language code")
]
output_transcribe1 = gr.Textbox(label="output")
transcribe_audio1= gr.Button("Submit")
'''with gr.Tab("Auto1"):
gr.Markdown("automatically detects your language")
inputs_speech2 = gr.Audio(label="Input Audio", type="file")
output_transcribe2 = gr.Textbox()
transcribe_audio2= gr.Button("Submit")'''
transcribe_audio.click(fn=predict,
inputs=inputs_speech,
outputs=output_transcribe)
transcribe_audio1.click(fn=predict_lang_specific,
inputs=inputs_speech1 ,
outputs=output_transcribe1 )
'''transcribe_audio2.click(fn=recognition,
inputs=inputs_speech2 ,
outputs=output_transcribe2 )'''
if __name__ == "__main__":
demo.launch()