Spaces:
Sleeping
Sleeping
File size: 6,853 Bytes
7dae9d7 38bf7e6 a4703d7 38bf7e6 555cfd1 38bf7e6 a4703d7 38bf7e6 555cfd1 38bf7e6 555cfd1 38bf7e6 555cfd1 38bf7e6 555cfd1 38bf7e6 555cfd1 38bf7e6 555cfd1 38bf7e6 555cfd1 3a651ce 555cfd1 38bf7e6 a4703d7 38bf7e6 555cfd1 38bf7e6 8d2c0b1 555cfd1 a4703d7 38bf7e6 555cfd1 38bf7e6 555cfd1 38bf7e6 555cfd1 38bf7e6 a4703d7 38bf7e6 a4703d7 555cfd1 38bf7e6 555cfd1 38bf7e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
import time
from openai import OpenAI
import numpy as np
import streamlit as st
import tensorflow as tf
import tensorflow_text
# import plotly.graph_objects as go
# from dotenv import load_dotenv
from langchain_openai import OpenAI as OpenAiLC
from langchain.memory import ConversationSummaryMemory, ChatMessageHistory
from llm import sys_instruction
##############
# PAGE STYLES
# Set page title and icon
st.set_page_config(page_title="EmoInsight",
page_icon=":robot_face:",
initial_sidebar_state="expanded",)
# Custom css styles
with open('style.css') as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# Load variables from .env file
# load_dotenv()
# Load large model
@st.cache_resource # Decorator to cache non-data objects
def Loading_sentiment_analysis_model():
model = tf.saved_model.load('one_2')
return model
senti_model = Loading_sentiment_analysis_model()
emoji_mapping = {
"sadness": "π’",
"neutral": "π",
"joy": "π",
"anger": "π‘",
"fear": "π¨",
"love": "β€οΈ",
"surprise": "π²",
}
emotion_categories = {
0: 'anger',
1: 'fear',
2: 'joy',
3: 'love',
4: 'neutral',
5: 'sadness',
6: 'surprise'
}
##################
# STATE VARIABLES
# set api key
if 'key' not in st.session_state:
st.session_state.key = os.environ["API_TOKEN"]
# openai.api_key = st.session_state.key
# gpt llm
if 'llm' not in st.session_state:
st.session_state.llm = OpenAiLC(
temperature=0.2, openai_api_key=st.session_state.key)
# model name
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo"
# openai client
# model name
if "client" not in st.session_state:
st.session_state["client"] = OpenAI(
api_key=st.session_state.key
)
# st chat history
if "message_history" not in st.session_state:
st.session_state.message_history = []
# set instruction for gpt response
if 'sys_inst' not in st.session_state:
st.session_state.sys_inst = sys_instruction()
# dict to store user question emotion
if 'emotion_counts' not in st.session_state:
st.session_state.emotion_counts = {
'anger': 0,
'fear': 0,
'joy': 0,
'love': 0,
'neutral': 0,
'sadness': 0,
'surprise': 0
}
#######################
# LANG-CHAIN VARIABLES
# storing chat history
if 'old_summary' not in st.session_state:
st.session_state.old_summary = 'User came to psychological assistant chatbot'
# langChian msg history
if 'lg_msg_history' not in st.session_state:
st.session_state.lg_msg_history = ChatMessageHistory()
# summarize old conversation
if 'memory' not in st.session_state:
st.session_state.memory = ConversationSummaryMemory.from_messages(
llm=st.session_state.llm,
buffer=st.session_state.old_summary,
return_messages=True,
chat_memory=st.session_state.lg_msg_history)
#############################################
# MAIN APP #
#############################################
st.sidebar.markdown('')
st.sidebar.markdown('')
st.sidebar.markdown('')
st.sidebar.success("Select `Sentiment Plot` button to see the Emotino Graph")
st.sidebar.markdown('')
clear_chats = st.sidebar.button('Clear Chat')
if clear_chats:
st.session_state.lg_msg_history.clear()
st.session_state.old_summary = 'User came to psychological assistant chatbot'
st.session_state.message_history = []
alert = st.sidebar.warning('Chat cleared', icon='π¨')
time.sleep(2) # Wait for 3 seconds
alert.empty() # Clear the alert
st.markdown("<h1><center>EmoInsight</center></h1>",
unsafe_allow_html=True)
# greetings
if len(st.session_state.message_history) == 0:
# add to st history
st.session_state.message_history.append(
{"role": "assistant", "content": "How can I help you?"})
# add to lg history
# st.session_state.lg_msg_history.add_ai_message("How can I help you?")
# HISTORY
for message in st.session_state.message_history:
if message['role'] == 'system':
with st.chat_message("Emotion", avatar=emoji_mapping.get(message["content"])):
a = "Sentiment: {}".format(message["content"])
st.markdown(a)
else:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# CHAT BOT
if prompt := st.chat_input("What is up?"):
# USER
with st.chat_message("user"):
st.markdown(prompt)
# add to st history
st.session_state.message_history.append(
{"role": "user", "content": prompt})
# add to lg history
st.session_state.lg_msg_history.add_user_message(prompt)
# SENTIMENT PREDICION
emotion = senti_model([prompt])
true_classes = np.argmax(emotion, axis=1)
emotion_category = emotion_categories.get(int(true_classes))
st.session_state.emotion_counts[emotion_category] += 1
# EMOTION
with st.chat_message("Emotion", avatar=emoji_mapping.get(emotion_category)):
st.write("Sentiment: {}".format(emotion_category))
st.session_state.message_history.append(
{"role": "system", "content": emotion_category})
# AI BOT
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
# get response
for chunk in st.session_state.client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": st.session_state.sys_inst.format(
history=st.session_state.old_summary)},
{"role": "user", "content": prompt}
], # pass old chat history
stream=True):
# render gpt response in realtime
if chunk.choices[0].delta.content:
# print(chunk.choices[0].delta.content)
full_response += chunk.choices[0].delta.content
message_placeholder.markdown(full_response + "β")
message_placeholder.markdown(full_response)
# add to st history
st.session_state.message_history.append(
{"role": "assistant", "content": full_response})
# add to lg history
st.session_state.lg_msg_history.add_ai_message(prompt)
# Clear old chat after 4 dialogs
# And update old summary with new summary
chat_len = len(st.session_state.lg_msg_history.messages)
if (chat_len >= 4) and (chat_len % 4 == 0):
# get new summary of chat
st.session_state.old_summary = st.session_state.memory.predict_new_summary(
messages=st.session_state.lg_msg_history.messages,
existing_summary=st.session_state.old_summary)
# flush old lg-chat history
st.session_state.lg_msg_history.clear() |