File size: 8,726 Bytes
62a3a6b
 
 
 
 
ef06fac
335c9b1
ef06fac
335c9b1
 
62a3a6b
 
 
ef06fac
335c9b1
 
62a3a6b
 
 
 
 
1659620
62a3a6b
67c04f8
62a3a6b
67c04f8
 
 
62a3a6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0361769
 
 
 
 
62a3a6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c6413e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from typing import Iterator

import gradio as gr
import torch

from daytona import DAYTONA_smaller

from model import get_input_token_length, run


DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\
"""
DEFAULT_SYSTEM_PROMPT = DAYTONA_smaller


MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4000

DESCRIPTION = """
# Daytona Beach Ambassador

This Space demonstrates a [long prompt](https://huggingface.co/spaces/kananj/Daytona-Beach-Ambassador/blob/main/daytona.py) running on the base model [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat).

The prompt instructs the AI to be "helpful, respectful and honest ambassador for Daytona Beach Florida". The prompt then loads in the [Wikipedia page for Daytona Beach, Florida](https://en.wikipedia.org/wiki/Daytona_Beach,_Florida), slight shortened so it can fit into the token limit.

It will attempt to answer questions about Daytona Beach, while also encouraging you to visit!
"""

LICENSE = """
<p/>

---
As a derivate work of [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/USE_POLICY.md).
"""

if not torch.cuda.is_available():
    DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>'


def clear_and_save_textbox(message: str) -> tuple[str, str]:
    return '', message


def display_input(message: str,
                  history: list[tuple[str, str]]) -> list[tuple[str, str]]:
    history.append((message, ''))
    return history


def delete_prev_fn(
        history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
    try:
        message, _ = history.pop()
    except IndexError:
        message = ''
    return history, message or ''


def generate(
    message: str,
    history_with_input: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
) -> Iterator[list[tuple[str, str]]]:
    if max_new_tokens > MAX_MAX_NEW_TOKENS:
        raise ValueError

    history = history_with_input[:-1]
    generator = run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k)
    try:
        first_response = next(generator)
        yield history + [(message, first_response)]
    except StopIteration:
        yield history + [(message, '')]
    for response in generator:
        yield history + [(message, response)]


def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
    generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
    for x in generator:
        pass
    return '', x


def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
    input_token_length = get_input_token_length(message, chat_history, system_prompt)
    if input_token_length > MAX_INPUT_TOKEN_LENGTH:
        raise gr.Error(f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.')


with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value='Duplicate Space for private use',
                       elem_id='duplicate-button')

    with gr.Group():
        chatbot = gr.Chatbot(label='Chatbot')
        with gr.Row():
            textbox = gr.Textbox(
                container=False,
                show_label=False,
                placeholder='Type a message...',
                scale=10,
            )
            submit_button = gr.Button('Submit',
                                      variant='primary',
                                      scale=1,
                                      min_width=0)
    with gr.Row():
        retry_button = gr.Button('🔄  Retry', variant='secondary')
        undo_button = gr.Button('↩️ Undo', variant='secondary')
        clear_button = gr.Button('🗑️  Clear', variant='secondary')

    saved_input = gr.State()

    with gr.Accordion(label='Advanced options', open=False):
        system_prompt = gr.Textbox(label='System prompt',
                                   value=DEFAULT_SYSTEM_PROMPT,
                                   lines=6)
        max_new_tokens = gr.Slider(
            label='Max new tokens',
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        )
        temperature = gr.Slider(
            label='Temperature',
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=1.0,
        )
        top_p = gr.Slider(
            label='Top-p (nucleus sampling)',
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.95,
        )
        top_k = gr.Slider(
            label='Top-k',
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        )

    gr.Examples(
        examples=[
            'Hello there! Tell me about Daytona Beach?',
            'When is the best time to visit Daytona Beach?',
            'Tell me about the sports located in Daytona Beach.',
            'How many beaches are in the Daytona Beach area?',
            "Write a 100-word article on 'Why my family should visit Daytona Beach'",
        ],
        inputs=textbox,
        outputs=[textbox, chatbot],
        fn=process_example,
        cache_examples=True,
    )

    gr.Markdown(LICENSE)

    textbox.submit(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot, system_prompt],
        api_name=False,
        queue=False,
    ).success(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    button_event_preprocess = submit_button.click(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot, system_prompt],
        api_name=False,
        queue=False,
    ).success(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    retry_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    undo_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=lambda x: x,
        inputs=[saved_input],
        outputs=textbox,
        api_name=False,
        queue=False,
    )

    clear_button.click(
        fn=lambda: ([], ''),
        outputs=[chatbot, saved_input],
        queue=False,
        api_name=False,
    )

demo.queue(max_size=20).launch()