Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,26 @@
|
|
1 |
-
|
2 |
-
# Import the necessary Libraries
|
3 |
import os
|
4 |
import uuid
|
5 |
import json
|
6 |
|
7 |
import gradio as gr
|
8 |
-
#import openai
|
9 |
-
#import load_dotenv
|
10 |
-
!pip install openai
|
11 |
from openai import OpenAI
|
12 |
-
|
13 |
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
14 |
from langchain_community.vectorstores import Chroma
|
15 |
-
|
16 |
from huggingface_hub import CommitScheduler
|
17 |
from pathlib import Path
|
18 |
from dotenv import load_dotenv
|
19 |
|
20 |
-
|
21 |
-
# Create Client
|
22 |
load_dotenv()
|
23 |
|
24 |
-
|
|
|
25 |
|
|
|
26 |
client = OpenAI()
|
27 |
|
|
|
28 |
embeddings = SentenceTransformerEmbeddings(model_name="thenlper/gte-large")
|
29 |
-
# Define the embedding model and the vectorstore
|
30 |
-
|
31 |
collection_name = 'report-10k-2024'
|
32 |
|
33 |
vectorstore_persisted = Chroma(
|
@@ -36,16 +29,12 @@ vectorstore_persisted = Chroma(
|
|
36 |
embedding_function=embeddings
|
37 |
)
|
38 |
|
39 |
-
# Load the persisted vectorDB
|
40 |
-
|
41 |
retriever = vectorstore_persisted.as_retriever(
|
42 |
search_type='similarity',
|
43 |
search_kwargs={'k': 5}
|
44 |
)
|
45 |
|
46 |
-
|
47 |
-
# Prepare the logging functionality
|
48 |
-
|
49 |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
50 |
log_folder = log_file.parent
|
51 |
|
@@ -58,13 +47,10 @@ scheduler = CommitScheduler(
|
|
58 |
)
|
59 |
|
60 |
# Define the Q&A system message
|
61 |
-
|
62 |
qna_system_message = """
|
63 |
You are an AI assistant to help Finsights Grey Inc., an innovative financial technology firm, develop a Retrieval-Augmented Generation (RAG) system to automate the extraction, summarization, and analysis of information from 10-K reports. Your knowledge base was last updated in August 2023.
|
64 |
-
|
65 |
User input will have the context required by you to answer user questions. This context will begin with the token: ###Context.
|
66 |
The context contains references to specific portions of a 10-K report relevant to the user query.
|
67 |
-
|
68 |
User questions will begin with the token: ###Question.
|
69 |
Your response should only be about the question asked and the context provided.
|
70 |
Answer only using the context provided.
|
@@ -72,44 +58,29 @@ Do not mention anything about the context in your final answer.
|
|
72 |
If the answer is not found in the context, it is very important for you to respond with "I don't know."
|
73 |
Always quote the source when you use the context. Cite the relevant source at the end of your response under the section - Source:
|
74 |
Do not make up sources. Use the links provided in the sources section of the context and nothing else. You are prohibited from providing other links/sources.
|
75 |
-
Here is an example of how to structure your response:
|
76 |
-
|
77 |
-
Answer:
|
78 |
-
[Answer]
|
79 |
-
|
80 |
-
Source:
|
81 |
-
[Source]
|
82 |
"""
|
83 |
|
84 |
-
# Define the user message template
|
85 |
qna_user_message_template = """
|
86 |
###Context
|
87 |
Here are some documents that are relevant to the question.
|
88 |
{context}
|
89 |
-
```
|
90 |
{question}
|
91 |
-
```
|
92 |
-
"""
|
93 |
|
94 |
-
|
95 |
-
|
|
|
96 |
|
97 |
-
|
98 |
-
|
|
|
|
|
99 |
|
100 |
-
# Create
|
101 |
context_list = [d.page_content for d in relevant_document_chunks]
|
102 |
context_for_query = ".".join(context_list)
|
103 |
|
104 |
# Create messages
|
105 |
-
prompt = [
|
106 |
-
{'role':'system', 'content': qna_system_message},
|
107 |
-
{'role': 'user', 'content': qna_user_message_template.format(
|
108 |
-
context=context_for_query,
|
109 |
-
question=user_input
|
110 |
-
)
|
111 |
-
}
|
112 |
-
]
|
113 |
|
114 |
# Get response from the LLM
|
115 |
try:
|
@@ -122,12 +93,9 @@ def predict(user_input,company):
|
|
122 |
prediction = response.choices[0].message.content
|
123 |
|
124 |
except Exception as e:
|
125 |
-
prediction = e
|
126 |
-
|
127 |
-
# While the prediction is made, log both the inputs and outputs to a local log file
|
128 |
-
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
129 |
-
# access
|
130 |
|
|
|
131 |
with scheduler.lock:
|
132 |
with log_file.open("a") as f:
|
133 |
f.write(json.dumps(
|
@@ -144,40 +112,26 @@ def predict(user_input,company):
|
|
144 |
|
145 |
def get_predict(question, company):
|
146 |
# Implement your prediction logic here
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
# Perform prediction for Meta
|
158 |
-
selectedCompany = "meta"
|
159 |
-
elif company == "Microsoft":
|
160 |
-
# Perform prediction for Microsoft
|
161 |
-
selectedCompany = "msft"
|
162 |
-
else:
|
163 |
return "Invalid company selected"
|
164 |
-
|
165 |
-
|
166 |
-
return output
|
167 |
|
168 |
# Set-up the Gradio UI
|
169 |
-
# Add text box and radio button to the interface
|
170 |
-
# The radio button is used to select the company 10k report in which the context needs to be retrieved.
|
171 |
-
|
172 |
-
# Create the interface
|
173 |
-
# For the inputs parameter of Interface provide [textbox,company]
|
174 |
-
|
175 |
with gr.Blocks(theme="gradio/seafoam@>=0.0.1,<0.1.0") as demo:
|
176 |
with gr.Row():
|
177 |
company = gr.Radio(["AWS", "IBM", "Google", "Meta", "Microsoft"], label="Select a company")
|
178 |
question = gr.Textbox(label="Enter your question")
|
179 |
|
180 |
-
|
181 |
submit = gr.Button("Submit")
|
182 |
output = gr.Textbox(label="Output")
|
183 |
|
@@ -188,4 +142,4 @@ with gr.Blocks(theme="gradio/seafoam@>=0.0.1,<0.1.0") as demo:
|
|
188 |
)
|
189 |
|
190 |
demo.queue()
|
191 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import os
|
2 |
import uuid
|
3 |
import json
|
4 |
|
5 |
import gradio as gr
|
|
|
|
|
|
|
6 |
from openai import OpenAI
|
|
|
7 |
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
8 |
from langchain_community.vectorstores import Chroma
|
|
|
9 |
from huggingface_hub import CommitScheduler
|
10 |
from pathlib import Path
|
11 |
from dotenv import load_dotenv
|
12 |
|
13 |
+
# Load environment variables from .env file
|
|
|
14 |
load_dotenv()
|
15 |
|
16 |
+
# Set OpenAI API key
|
17 |
+
openai.api_key = os.getenv("OPENAI_API_KEY") # Make sure OPENAI_API_KEY is in your .env file
|
18 |
|
19 |
+
# Initialize OpenAI client
|
20 |
client = OpenAI()
|
21 |
|
22 |
+
# Set up embeddings and vectorstore
|
23 |
embeddings = SentenceTransformerEmbeddings(model_name="thenlper/gte-large")
|
|
|
|
|
24 |
collection_name = 'report-10k-2024'
|
25 |
|
26 |
vectorstore_persisted = Chroma(
|
|
|
29 |
embedding_function=embeddings
|
30 |
)
|
31 |
|
|
|
|
|
32 |
retriever = vectorstore_persisted.as_retriever(
|
33 |
search_type='similarity',
|
34 |
search_kwargs={'k': 5}
|
35 |
)
|
36 |
|
37 |
+
# Set up logging
|
|
|
|
|
38 |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
39 |
log_folder = log_file.parent
|
40 |
|
|
|
47 |
)
|
48 |
|
49 |
# Define the Q&A system message
|
|
|
50 |
qna_system_message = """
|
51 |
You are an AI assistant to help Finsights Grey Inc., an innovative financial technology firm, develop a Retrieval-Augmented Generation (RAG) system to automate the extraction, summarization, and analysis of information from 10-K reports. Your knowledge base was last updated in August 2023.
|
|
|
52 |
User input will have the context required by you to answer user questions. This context will begin with the token: ###Context.
|
53 |
The context contains references to specific portions of a 10-K report relevant to the user query.
|
|
|
54 |
User questions will begin with the token: ###Question.
|
55 |
Your response should only be about the question asked and the context provided.
|
56 |
Answer only using the context provided.
|
|
|
58 |
If the answer is not found in the context, it is very important for you to respond with "I don't know."
|
59 |
Always quote the source when you use the context. Cite the relevant source at the end of your response under the section - Source:
|
60 |
Do not make up sources. Use the links provided in the sources section of the context and nothing else. You are prohibited from providing other links/sources.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
"""
|
62 |
|
|
|
63 |
qna_user_message_template = """
|
64 |
###Context
|
65 |
Here are some documents that are relevant to the question.
|
66 |
{context}
|
|
|
67 |
{question}
|
|
|
|
|
68 |
|
69 |
+
css
|
70 |
+
Copy code
|
71 |
+
"""
|
72 |
|
73 |
+
# Define the predict function
|
74 |
+
def predict(user_input, company):
|
75 |
+
filter = "dataset/" + company + "-10-k-2023.pdf"
|
76 |
+
relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source": filter})
|
77 |
|
78 |
+
# Create context for query
|
79 |
context_list = [d.page_content for d in relevant_document_chunks]
|
80 |
context_for_query = ".".join(context_list)
|
81 |
|
82 |
# Create messages
|
83 |
+
prompt = [ {'role': 'system', 'content': qna_system_message}, {'role': 'user', 'content': qna_user_message_template.format( context=context_for_query, question=user_input )} ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# Get response from the LLM
|
86 |
try:
|
|
|
93 |
prediction = response.choices[0].message.content
|
94 |
|
95 |
except Exception as e:
|
96 |
+
prediction = str(e)
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
# Log inputs and outputs to a local log file
|
99 |
with scheduler.lock:
|
100 |
with log_file.open("a") as f:
|
101 |
f.write(json.dumps(
|
|
|
112 |
|
113 |
def get_predict(question, company):
|
114 |
# Implement your prediction logic here
|
115 |
+
company_map = {
|
116 |
+
"AWS": "aws",
|
117 |
+
"IBM": "IBM",
|
118 |
+
"Google": "Google",
|
119 |
+
"Meta": "meta",
|
120 |
+
"Microsoft": "msft"
|
121 |
+
}
|
122 |
+
|
123 |
+
selected_company = company_map.get(company)
|
124 |
+
if not selected_company:
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
return "Invalid company selected"
|
126 |
+
|
127 |
+
return predict(question, selected_company)
|
|
|
128 |
|
129 |
# Set-up the Gradio UI
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
with gr.Blocks(theme="gradio/seafoam@>=0.0.1,<0.1.0") as demo:
|
131 |
with gr.Row():
|
132 |
company = gr.Radio(["AWS", "IBM", "Google", "Meta", "Microsoft"], label="Select a company")
|
133 |
question = gr.Textbox(label="Enter your question")
|
134 |
|
|
|
135 |
submit = gr.Button("Submit")
|
136 |
output = gr.Textbox(label="Output")
|
137 |
|
|
|
142 |
)
|
143 |
|
144 |
demo.queue()
|
145 |
+
demo.launch()
|