kajila commited on
Commit
7ec2901
·
verified ·
1 Parent(s): 72795c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -32
app.py CHANGED
@@ -144,55 +144,37 @@ Here are some documents that are relevant to the question.
144
  ```
145
  """
146
  # Define the predict function
147
- def predict(user_input,company):
148
-
149
- filter = "dataset/"+company+"-10-k-2023.pdf"
150
- relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":filter})
151
 
152
- # Create context_for_query
153
  context_list = [d.page_content for d in relevant_document_chunks]
154
- context_for_query = ".".join(context_list)
155
 
156
  # Create messages
157
  prompt = [
158
- {'role':'system', 'content': qna_system_message},
159
  {'role': 'user', 'content': qna_user_message_template.format(
160
- context=context_for_query,
161
  question=user_input
162
- )
163
- }
164
  ]
165
 
166
- # Get response from the LLM
167
  try:
168
- response = client.chat.completions.create(
169
- model='mistralai/Mixtral-8x7B-Instruct-v0.1',
 
170
  messages=prompt,
171
  temperature=0
172
  )
173
-
174
- prediction = response.choices[0].message.content
175
 
176
  except Exception as e:
177
- prediction = e
178
-
179
- # While the prediction is made, log both the inputs and outputs to a local log file
180
- # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
181
- # access
182
-
183
- with scheduler.lock:
184
- with log_file.open("a") as f:
185
- f.write(json.dumps(
186
- {
187
- 'user_input': user_input,
188
- 'retrieved_context': context_for_query,
189
- 'model_response': prediction
190
- }
191
- ))
192
- f.write("\n")
193
 
194
  return prediction
195
-
196
 
197
  examples = [
198
  ["What are the company's policies and frameworks regarding AI ethics, governance, and responsible AI use as detailed in their 10-K reports?", "AWS"],
 
144
  ```
145
  """
146
  # Define the predict function
147
+ def predict(user_input, company):
148
+ filter = f"dataset/{company}-10-k-2023.pdf"
149
+ relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source": filter})
 
150
 
151
+ # Create context for query
152
  context_list = [d.page_content for d in relevant_document_chunks]
153
+ context_for_query = ".".join(context_list) # Ensure this is being assigned correctly
154
 
155
  # Create messages
156
  prompt = [
157
+ {'role': 'system', 'content': qna_system_message},
158
  {'role': 'user', 'content': qna_user_message_template.format(
159
+ context=context_for_query, # Passing the correct context
160
  question=user_input
161
+ )}
 
162
  ]
163
 
 
164
  try:
165
+ # Get response from the LLM
166
+ response = openai.ChatCompletion.create(
167
+ model='gpt-3.5-turbo',
168
  messages=prompt,
169
  temperature=0
170
  )
171
+ prediction = response['choices'][0]['message']['content']
 
172
 
173
  except Exception as e:
174
+ prediction = f"Error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
 
176
  return prediction
177
+
178
 
179
  examples = [
180
  ["What are the company's policies and frameworks regarding AI ethics, governance, and responsible AI use as detailed in their 10-K reports?", "AWS"],