Spaces:
Running
on
Zero
Running
on
Zero
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact [email protected] | |
# | |
import torch | |
from scene import Scene | |
import os | |
from tqdm import tqdm | |
from os import makedirs | |
from gaussian_renderer import render | |
import torchvision | |
from utils.general_utils import safe_state | |
from argparse import ArgumentParser | |
from arguments import ModelParams, PipelineParams, get_combined_args | |
from gaussian_renderer import GaussianModel | |
from utils.pose_utils import get_tensor_from_camera | |
from utils.camera_utils import generate_interpolated_path | |
from utils.camera_utils import visualizer | |
import cv2 | |
import numpy as np | |
import imageio | |
def save_interpolate_pose(model_path, iter, n_views): | |
org_pose = np.load(model_path + f"pose/pose_{iter}.npy") | |
# visualizer(org_pose, ["green" for _ in org_pose], model_path + "pose/poses_optimized.png") | |
# n_interp = int(10 * 30 / n_views) # 10second, fps=30 | |
n_interp = int(5 * 30 / n_views) # 5second, fps=30 | |
all_inter_pose = [] | |
for i in range(n_views-1): | |
tmp_inter_pose = generate_interpolated_path(poses=org_pose[i:i+2], n_interp=n_interp) | |
all_inter_pose.append(tmp_inter_pose) | |
all_inter_pose = np.array(all_inter_pose).reshape(-1, 3, 4) | |
inter_pose_list = [] | |
for p in all_inter_pose: | |
tmp_view = np.eye(4) | |
tmp_view[:3, :3] = p[:3, :3] | |
tmp_view[:3, 3] = p[:3, 3] | |
inter_pose_list.append(tmp_view) | |
inter_pose = np.stack(inter_pose_list, 0) | |
# visualizer(inter_pose, ["blue" for _ in inter_pose], model_path + "pose/poses_interpolated.png") | |
np.save(model_path + "pose/pose_interpolated.npy", inter_pose) | |
def images_to_video(image_folder, output_video_path, fps=30): | |
""" | |
Convert images in a folder to a video. | |
Args: | |
- image_folder (str): The path to the folder containing the images. | |
- output_video_path (str): The path where the output video will be saved. | |
- fps (int): Frames per second for the output video. | |
""" | |
images = [] | |
for filename in sorted(os.listdir(image_folder)): | |
if filename.endswith(('.png', '.jpg', '.jpeg', '.JPG', '.PNG')): | |
image_path = os.path.join(image_folder, filename) | |
image = imageio.imread(image_path) | |
images.append(image) | |
imageio.mimwrite(output_video_path, images, fps=fps) | |
def render_set(model_path, name, iteration, views, gaussians, pipeline, background): | |
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders") | |
makedirs(render_path, exist_ok=True) | |
# for idx, view in enumerate(tqdm(views, desc="Rendering progress")): | |
for idx, view in enumerate(views): | |
camera_pose = get_tensor_from_camera(view.world_view_transform.transpose(0, 1)) | |
rendering = render( | |
view, gaussians, pipeline, background, camera_pose=camera_pose | |
)["render"] | |
gt = view.original_image[0:3, :, :] | |
torchvision.utils.save_image( | |
rendering, os.path.join(render_path, "{0:05d}".format(idx) + ".png") | |
) | |
def render_sets( | |
dataset: ModelParams, | |
iteration: int, | |
pipeline: PipelineParams, | |
skip_train: bool, | |
skip_test: bool, | |
args, | |
): | |
# Applying interpolation | |
save_interpolate_pose(dataset.model_path, iteration, args.n_views) | |
with torch.no_grad(): | |
gaussians = GaussianModel(dataset.sh_degree) | |
scene = Scene(dataset, gaussians, load_iteration=iteration, opt=args, shuffle=False) | |
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0] | |
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") | |
# render interpolated views | |
render_set( | |
dataset.model_path, | |
"interp", | |
scene.loaded_iter, | |
scene.getTrainCameras(), | |
gaussians, | |
pipeline, | |
background, | |
) | |
if args.get_video: | |
image_folder = os.path.join(dataset.model_path, f'interp/ours_{args.iteration}/renders') | |
output_video_file = os.path.join(dataset.model_path, f'{args.scene}_{args.n_views}_view.mp4') | |
images_to_video(image_folder, output_video_file, fps=30) | |
if __name__ == "__main__": | |
# Set up command line argument parser | |
parser = ArgumentParser(description="Testing script parameters") | |
model = ModelParams(parser, sentinel=True) | |
pipeline = PipelineParams(parser) | |
parser.add_argument("--iteration", default=-1, type=int) | |
parser.add_argument("--skip_train", action="store_true") | |
parser.add_argument("--skip_test", action="store_true") | |
parser.add_argument("--quiet", action="store_true") | |
parser.add_argument("--get_video", action="store_true") | |
parser.add_argument("--n_views", default=None, type=int) | |
parser.add_argument("--scene", default=None, type=str) | |
args = get_combined_args(parser) | |
print("Rendering " + args.model_path) | |
# Initialize system state (RNG) | |
# safe_state(args.quiet) | |
render_sets( | |
model.extract(args), | |
args.iteration, | |
pipeline.extract(args), | |
args.skip_train, | |
args.skip_test, | |
args, | |
) | |