kadirnar commited on
Commit
5814a16
1 Parent(s): 8cbe3ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -2,7 +2,6 @@ from transformers import pipeline, set_seed
2
  from transformers import BioGptTokenizer, BioGptForCausalLM
3
  from multilingual_translation import translate
4
  from utils import lang_ids
5
-
6
  import gradio as gr
7
 
8
  model_list = [
@@ -19,18 +18,16 @@ def translate_to_english(text, base_lang):
19
  base_lang = lang_ids[base_lang]
20
  new_text = translate("facebook/m2m100_418M", text, base_lang, "en")
21
  return new_text
22
-
23
 
24
  def biogpt(
25
  prompt: str,
26
  model_id: str,
27
  max_length: int = 25,
28
  num_return_sequences: int = 5,
29
- base_lang: str = "en"
30
  ):
31
 
32
- en_prompt = translate_to_english(prompt, base_lang)
33
-
34
  model = BioGptForCausalLM.from_pretrained(model_id)
35
  tokenizer = BioGptTokenizer.from_pretrained(model_id)
36
  generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
@@ -43,6 +40,7 @@ def biogpt(
43
  "4": output[3]['generated_text'],
44
  "5": output[4]['generated_text']
45
  }
 
46
  output_text = f'{output_dict["1"]}\n\n{output_dict["2"]}\n\n{output_dict["3"]}\n\n{output_dict["4"]}\n\n{output_dict["5"]}'
47
  return en_prompt, output_text
48
 
@@ -64,7 +62,6 @@ examples = [
64
  ["COVID-19 is", "microsoft/biogpt", 25, 5, "English"],
65
  ["Kanser", "microsoft/biogpt", 25, 5, "Turkish"]
66
  ]
67
-
68
  title = " BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining"
69
  demo_app = gr.Interface(
70
  biogpt,
 
2
  from transformers import BioGptTokenizer, BioGptForCausalLM
3
  from multilingual_translation import translate
4
  from utils import lang_ids
 
5
  import gradio as gr
6
 
7
  model_list = [
 
18
  base_lang = lang_ids[base_lang]
19
  new_text = translate("facebook/m2m100_418M", text, base_lang, "en")
20
  return new_text
 
21
 
22
  def biogpt(
23
  prompt: str,
24
  model_id: str,
25
  max_length: int = 25,
26
  num_return_sequences: int = 5,
27
+ base_lang: str = "English"
28
  ):
29
 
30
+ en_prompt = translate_to_english(prompt, base_lang)[0]
 
31
  model = BioGptForCausalLM.from_pretrained(model_id)
32
  tokenizer = BioGptTokenizer.from_pretrained(model_id)
33
  generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
 
40
  "4": output[3]['generated_text'],
41
  "5": output[4]['generated_text']
42
  }
43
+
44
  output_text = f'{output_dict["1"]}\n\n{output_dict["2"]}\n\n{output_dict["3"]}\n\n{output_dict["4"]}\n\n{output_dict["5"]}'
45
  return en_prompt, output_text
46
 
 
62
  ["COVID-19 is", "microsoft/biogpt", 25, 5, "English"],
63
  ["Kanser", "microsoft/biogpt", 25, 5, "Turkish"]
64
  ]
 
65
  title = " BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining"
66
  demo_app = gr.Interface(
67
  biogpt,