k-kotetsu's picture
Update app.py
1972fc0
raw
history blame
9.75 kB
import gradio as gr
import cv2
import numpy
import os
import random
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from PIL import Image
from PIL.PngImagePlugin import PngInfo
last_file = None
img_mode = "RGBA"
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale, ext):
"""Real-ESRGAN function to restore (and upscale) images.
"""
if not img:
return
# Define model parameters
if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
netscale = 4
file_url = [
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
]
# Determine model paths
model_path = os.path.join('weights', model_name + '.pth')
if not os.path.isfile(model_path):
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
for url in file_url:
# model_path will be updated
model_path = load_file_from_url(
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
# Use dni to control the denoise strength
dni_weight = None
if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
model_path = [model_path, wdn_model_path]
dni_weight = [denoise_strength, 1 - denoise_strength]
# Restorer Class
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=dni_weight,
model=model,
tile=0,
tile_pad=10,
pre_pad=10,
half=False,
gpu_id=None
)
# Use GFPGAN for face enhancement
if face_enhance:
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
upscale=outscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler)
try:
parameters = img.text['parameters']
except:
parameters = ''
# Convert the input PIL image to cv2 image, so that it can be processed by realesrgan
cv_img = numpy.array(img)
img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
# Apply restoration
try:
if face_enhance:
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
else:
output, _ = upsampler.enhance(img, outscale=outscale)
except RuntimeError as error:
print('Error', error)
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
else:
# Save restored image and return it to the output Image component
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
else:
extension = 'jpg'
#out_filename = f"output_{rnd_string(8)}.{extension}"
out_filename = f"output_{rnd_string(8)}." + ext
metadata = PngInfo()
if parameters != '':
metadata.add_text("parameters", parameters)
cv2.imwrite(out_filename, output, pnginfo=metadata)
global last_file
last_file = out_filename
return out_filename
def rnd_string(x):
"""Returns a string of 'x' random characters
"""
characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
result = "".join((random.choice(characters)) for i in range(x))
return result
def reset():
"""Resets the Image components of the Gradio interface and deletes
the last processed image
"""
global last_file
if last_file:
print(f"Deleting {last_file} ...")
os.remove(last_file)
last_file = None
return gr.update(value=None), gr.update(value=None)
def has_transparency(img):
"""This function works by first checking to see if a "transparency" property is defined
in the image's info -- if so, we return "True". Then, if the image is using indexed colors
(such as in GIFs), it gets the index of the transparent color in the palette
(img.info.get("transparency", -1)) and checks if it's used anywhere in the canvas
(img.getcolors()). If the image is in RGBA mode, then presumably it has transparency in
it, but it double-checks by getting the minimum and maximum values of every color channel
(img.getextrema()), and checks if the alpha channel's smallest value falls below 255.
https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
"""
if img.info.get("transparency", None) is not None:
return True
if img.mode == "P":
transparent = img.info.get("transparency", -1)
for _, index in img.getcolors():
if index == transparent:
return True
elif img.mode == "RGBA":
extrema = img.getextrema()
if extrema[3][0] < 255:
return True
return False
def image_properties(img):
"""Returns the dimensions (width and height) and color mode of the input image and
also sets the global img_mode variable to be used by the realesrgan function
"""
global img_mode
if img:
if has_transparency(img):
img_mode = "RGBA"
else:
img_mode = "RGB"
properties = f"Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
return properties
def main():
# Gradio Interface
with gr.Blocks(title="Upscaling Service") as demo:
gr.Markdown(
"""This Space is a fork of "Real-ESRGAN-Demo", so if you want to use it please refer to [havas79/Real-ESRGAN_Demo](https://huggingface.co/spaces/havas79/Real-ESRGAN_Demo), thank you!"""
)
with gr.Accordion("Options/Parameters"):
with gr.Row():
model_name = gr.Dropdown(label="Real-ESRGAN inference model to be used",
choices=["RealESRGAN_x4plus", "RealESRNet_x4plus", "RealESRGAN_x4plus_anime_6B",
"RealESRGAN_x2plus", "realesr-general-x4v3"],
value="realesr-general-x4v3", show_label=True)
denoise_strength = gr.Slider(label="Denoise Strength (Used only with the realesr-general-x4v3 model)",
minimum=0, maximum=1, step=0.1, value=0.5)
outscale = gr.Slider(label="Image Upscaling Factor",
minimum=1, maximum=10, step=1, value=4, show_label=True)
face_enhance = gr.Checkbox(label="Face Enhancement using GFPGAN (Doesn't work for anime images)",
value=False, show_label=True)
ext = gr.Dropdown(label="Output Ext",
choices=["png", "jpg"],
value="png", show_label=True)
with gr.Row():
with gr.Group():
input_image = gr.Image(label="Source Image", type="pil", image_mode="RGBA")
input_image_properties = gr.Textbox(label="Image Properties", max_lines=1)
output_image = gr.Image(label="Restored Image", image_mode="RGBA", show_share_button=False)
with gr.Row():
restore_btn = gr.Button("Upscale")
# Event listeners:
input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
restore_btn.click(fn=realesrgan,
inputs=[input_image, model_name, denoise_strength, face_enhance, outscale, ext],
outputs=output_image,
api_name="upscale")
gr.Markdown(
"""*Please note that support for animated GIFs is not yet implemented. Should an animated GIF is chosen for restoration,
the demo will output only the first frame saved in PNG format (to preserve probable transparency).*
"""
)
demo.launch()
if __name__ == "__main__":
main()