semantic-demo / model.py
jwalanthi's picture
pared down model
73d65b8
raw
history blame
15.6 kB
import torch
import lightning
# from torch.utils.data import Dataset
# from typing import Any, Dict
# import argparse
from pydantic import BaseModel
# from get_dataset_dictionaries import get_dict_pair
# import os
# import shutil
# import optuna
# from optuna.integration import PyTorchLightningPruningCallback
# from functools import partial
class FFNModule(torch.nn.Module):
"""
A pytorch module that regresses from a hidden state representation of a word
to its continuous linguistic feature norm vector.
It is a FFN with the general structure of:
input -> (linear -> nonlinearity -> dropout) x (num_layers - 1) -> linear -> output
"""
def __init__(
self,
input_size: int,
output_size: int,
hidden_size: int,
num_layers: int,
dropout: float,
):
super(FFNModule, self).__init__()
layers = []
for _ in range(num_layers - 1):
layers.append(torch.nn.Linear(input_size, hidden_size))
layers.append(torch.nn.ReLU())
layers.append(torch.nn.Dropout(dropout))
# changes input size to hidden size after first layer
input_size = hidden_size
layers.append(torch.nn.Linear(hidden_size, output_size))
self.network = torch.nn.Sequential(*layers)
def forward(self, x):
return self.network(x)
class FFNParams(BaseModel):
input_size: int
output_size: int
hidden_size: int
num_layers: int
dropout: float
class TrainingParams(BaseModel):
num_epochs: int
batch_size: int
learning_rate: float
weight_decay: float
class FeatureNormPredictor(lightning.LightningModule):
def __init__(self, ffn_params : FFNParams, training_params : TrainingParams):
super().__init__()
self.save_hyperparameters()
self.ffn_params = ffn_params
self.training_params = training_params
self.model = FFNModule(**ffn_params.model_dump())
self.loss_function = torch.nn.MSELoss()
self.training_params = training_params
def training_step(self, batch, batch_idx):
x,y = batch
outputs = self.model(x)
loss = self.loss_function(outputs, y)
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
x,y = batch
outputs = self.model(x)
loss = self.loss_function(outputs, y)
self.log("val_loss", loss, on_epoch=True, prog_bar=True)
return loss
def test_step(self, batch, batch_idx):
return self.model(batch)
def predict(self, batch):
return self.model(batch)
def __call__(self, input):
return self.model(input)
def configure_optimizers(self):
optimizer = torch.optim.Adam(
self.parameters(),
lr=self.training_params.learning_rate,
weight_decay=self.training_params.weight_decay,
)
return optimizer
def save_model(self, path: str):
torch.save(self.model.state_dict(), path)
def load_model(self, path: str):
self.model.load_state_dict(torch.load(path))
# class HiddenStateFeatureNormDataset(Dataset):
# def __init__(
# self,
# input_embeddings: Dict[str, torch.Tensor],
# feature_norms: Dict[str, torch.Tensor],
# ):
# # Invariant: input_embeddings and target_feature_norms have exactly the same keys
# # this should be done by the train/test split and upstream data processing
# assert(input_embeddings.keys() == feature_norms.keys())
# self.words = list(input_embeddings.keys())
# self.input_embeddings = torch.stack([
# input_embeddings[word] for word in self.words
# ])
# self.feature_norms = torch.stack([
# feature_norms[word] for word in self.words
# ])
# def __len__(self):
# return len(self.words)
# def __getitem__(self, idx):
# return self.input_embeddings[idx], self.feature_norms[idx]
# # this is used when not optimizing
# def train(args : Dict[str, Any]):
# # input_embeddings = torch.load(args.input_embeddings)
# # feature_norms = torch.load(args.feature_norms)
# # words = list(input_embeddings.keys())
# input_embeddings, feature_norms, norm_list = get_dict_pair(
# args.norm,
# args.embedding_dir,
# args.lm_layer,
# translated= False if args.raw_buchanan else True,
# normalized= True if args.normal_buchanan else False
# )
# norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
# norms_file.write("\n".join(norm_list))
# norms_file.close()
# words = list(input_embeddings.keys())
# model = FeatureNormPredictor(
# FFNParams(
# input_size=input_embeddings[words[0]].shape[0],
# output_size=feature_norms[words[0]].shape[0],
# hidden_size=args.hidden_size,
# num_layers=args.num_layers,
# dropout=args.dropout,
# ),
# TrainingParams(
# num_epochs=args.num_epochs,
# batch_size=args.batch_size,
# learning_rate=args.learning_rate,
# weight_decay=args.weight_decay,
# ),
# )
# # train/val split
# train_size = int(len(words) * 0.8)
# valid_size = len(words) - train_size
# train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
# # TODO: Methodology Decision: should we be normalizing the hidden states/feature norms?
# train_embeddings = {word: input_embeddings[word] for word in train_words}
# train_feature_norms = {word: feature_norms[word] for word in train_words}
# validation_embeddings = {word: input_embeddings[word] for word in validation_words}
# validation_feature_norms = {word: feature_norms[word] for word in validation_words}
# train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
# train_dataloader = torch.utils.data.DataLoader(
# train_dataset,
# batch_size=args.batch_size,
# shuffle=True,
# )
# validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
# validation_dataloader = torch.utils.data.DataLoader(
# validation_dataset,
# batch_size=args.batch_size,
# shuffle=True,
# )
# callbacks = [
# lightning.pytorch.callbacks.ModelCheckpoint(
# save_last=True,
# dirpath=args.save_dir,
# filename=args.save_model_name,
# ),
# ]
# if args.early_stopping is not None:
# callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
# monitor="val_loss",
# patience=args.early_stopping,
# mode='min',
# min_delta=0.0
# ))
# #TODO Design Decision - other trainer args? Is device necessary?
# # cpu is fine for the scale of this model - only a few layers and a few hundred words
# trainer = lightning.Trainer(
# max_epochs=args.num_epochs,
# callbacks=callbacks,
# accelerator="cpu",
# log_every_n_steps=7
# )
# trainer.fit(model, train_dataloader, validation_dataloader)
# trainer.validate(model, validation_dataloader)
# return model
# # this is used when optimizing
# def objective(trial: optuna.trial.Trial, args: Dict[str, Any]) -> float:
# # optimizing hidden size, batch size, and learning rate
# input_embeddings, feature_norms, norm_list = get_dict_pair(
# args.norm,
# args.embedding_dir,
# args.lm_layer,
# translated= False if args.raw_buchanan else True,
# normalized= True if args.normal_buchanan else False
# )
# norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
# norms_file.write("\n".join(norm_list))
# norms_file.close()
# words = list(input_embeddings.keys())
# input_size=input_embeddings[words[0]].shape[0]
# output_size=feature_norms[words[0]].shape[0]
# min_size = min(output_size, input_size)
# max_size = min(output_size, 2*input_size)if min_size == input_size else min(2*output_size, input_size)
# hidden_size = trial.suggest_int("hidden_size", min_size, max_size, log=True)
# batch_size = trial.suggest_int("batch_size", 16, 128, log=True)
# learning_rate = trial.suggest_float("learning_rate", 1e-6, 1, log=True)
# model = FeatureNormPredictor(
# FFNParams(
# input_size=input_size,
# output_size=output_size,
# hidden_size=hidden_size,
# num_layers=args.num_layers,
# dropout=args.dropout,
# ),
# TrainingParams(
# num_epochs=args.num_epochs,
# batch_size=batch_size,
# learning_rate=learning_rate,
# weight_decay=args.weight_decay,
# ),
# )
# # train/val split
# train_size = int(len(words) * 0.8)
# valid_size = len(words) - train_size
# train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
# train_embeddings = {word: input_embeddings[word] for word in train_words}
# train_feature_norms = {word: feature_norms[word] for word in train_words}
# validation_embeddings = {word: input_embeddings[word] for word in validation_words}
# validation_feature_norms = {word: feature_norms[word] for word in validation_words}
# train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
# train_dataloader = torch.utils.data.DataLoader(
# train_dataset,
# batch_size=args.batch_size,
# shuffle=True,
# )
# validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
# validation_dataloader = torch.utils.data.DataLoader(
# validation_dataset,
# batch_size=args.batch_size,
# shuffle=True,
# )
# callbacks = [
# # all trial models will be saved in temporary directory
# lightning.pytorch.callbacks.ModelCheckpoint(
# save_last=True,
# dirpath=os.path.join(args.save_dir,'optuna_trials'),
# filename="{}".format(trial.number)
# ),
# ]
# if args.prune is not None:
# callbacks.append(PyTorchLightningPruningCallback(
# trial,
# monitor='val_loss'
# ))
# if args.early_stopping is not None:
# callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
# monitor="val_loss",
# patience=args.early_stopping,
# mode='min',
# min_delta=0.0
# ))
# # note that if optimizing is chosen, will automatically not implement vanilla early stopping
# #TODO Design Decision - other trainer args? Is device necessary?
# # cpu is fine for the scale of this model - only a few layers and a few hundred words
# trainer = lightning.Trainer(
# max_epochs=args.num_epochs,
# callbacks=callbacks,
# accelerator="cpu",
# log_every_n_steps=7,
# # enable_checkpointing=False
# )
# trainer.fit(model, train_dataloader, validation_dataloader)
# trainer.validate(model, validation_dataloader)
# return trainer.callback_metrics['val_loss'].item()
# if __name__ == "__main__":
# # parse args
# parser = argparse.ArgumentParser()
# #TODO: Design Decision: Should we input paths, to the pre-extracted layers, or the model/layer we want to generate them from
# # required inputs
# parser.add_argument("--norm", type=str, required=True, help="feature norm set to use")
# parser.add_argument("--embedding_dir", type=str, required=True, help=" directory containing embeddings")
# parser.add_argument("--lm_layer", type=int, required=True, help="layer of embeddings to use")
# # if user selects optimize, hidden_size, batch_size and learning_rate will be optimized.
# parser.add_argument("--optimize", action="store_true", help="optimize hyperparameters for training")
# parser.add_argument("--prune", action="store_true", help="prune unpromising trials when optimizing")
# # optional hyperparameter specs
# parser.add_argument("--num_layers", type=int, default=2, help="number of layers in FFN")
# parser.add_argument("--hidden_size", type=int, default=100, help="hidden size of FFN")
# parser.add_argument("--dropout", type=float, default=0.1, help="dropout rate of FFN")
# # set this to at least 100 if doing early stopping
# parser.add_argument("--num_epochs", type=int, default=10, help="number of epochs to train for")
# parser.add_argument("--batch_size", type=int, default=32, help="batch size for training")
# parser.add_argument("--learning_rate", type=float, default=0.001, help="learning rate for training")
# parser.add_argument("--weight_decay", type=float, default=0.0, help="weight decay for training")
# parser.add_argument("--early_stopping", type=int, default=None, help="number of epochs to wait for early stopping")
# # optional dataset specs, for buchanan really
# parser.add_argument('--raw_buchanan', action="store_true", help="do not use translated values for buchanan")
# parser.add_argument('--normal_buchanan', action="store_true", help="use normalized features for buchanan")
# # required for output
# parser.add_argument("--save_dir", type=str, required=True, help="directory to save model to")
# parser.add_argument("--save_model_name", type=str, required=True, help="name of model to save")
# args = parser.parse_args()
# if args.early_stopping is not None:
# args.num_epochs = max(50, args.num_epochs)
# torch.manual_seed(10)
# if args.optimize:
# # call optimizer code here
# print("optimizing for learning rate, batch size, and hidden size")
# pruner = optuna.pruners.MedianPruner() if args.prune else optuna.pruners.NopPruner()
# sampler = optuna.samplers.TPESampler(seed=10)
# study = optuna.create_study(direction='minimize', pruner=pruner, sampler=sampler)
# study.optimize(partial(objective, args=args), n_trials = 100, timeout=600)
# other_params = {
# "num_layers": args.num_layers,
# "num_epochs": args.num_epochs,
# "dropout": args.dropout,
# "weight_decay": args.weight_decay,
# }
# print("Number of finished trials: {}".format(len(study.trials)))
# trial = study.best_trial
# print("Best trial: "+str(trial.number))
# print(" Validation Loss: {}".format(trial.value))
# print(" Optimized Params: ")
# for key, value in trial.params.items():
# print(" {}: {}".format(key, value))
# print(" User Defined Params: ")
# for key, value in other_params.items():
# print(" {}: {}".format(key, value))
# print('saving best trial')
# for filename in os.listdir(os.path.join(args.save_dir,'optuna_trials')):
# if filename == "{}.ckpt".format(trial.number):
# shutil.move(os.path.join(args.save_dir,'optuna_trials',filename), os.path.join(args.save_dir, "{}.ckpt".format(args.save_model_name)))
# shutil.rmtree(os.path.join(args.save_dir,'optuna_trials'))
# else:
# model = train(args)