Spaces:
Running
Running
import gradio as gr | |
import torch | |
from minicons import cwe | |
import pandas as pd | |
import numpy as np | |
from model import FeatureNormPredictor | |
def predict (word, sentence, lm_name, layer, norm): | |
if word not in sentence: return "invalid input: word not in sentence" | |
model_name = lm_name + str(layer) + '_to_' + norm | |
lm = cwe.CWE('bert-base-uncased') | |
if layer not in range (lm.layers): return "invalid input: layer not in lm" | |
model = FeatureNormPredictor.load_from_checkpoint( | |
checkpoint_path=model_name+'.ckpt', | |
map_location=None | |
) | |
model.eval() | |
inputs = [word, sentence, lm_name, str(layer), norm] | |
outputs = [input+'\t'+str(np.random.randint(0,100, size=1)[0]) for input in inputs] | |
return "\n".join(outputs) | |
demo = gr.Interface( | |
fn=predict, | |
inputs=[ | |
"text", | |
"text", | |
gr.Radio(["bert", "roberta", "electra"]), | |
"number", | |
gr.Radio(["Binder", "McRae", "Buchanan"]), | |
], | |
outputs=["text"], | |
) | |
demo.launch() |