Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import torch | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import gradio as gr | |
import gradio as gr | |
device = 0 if torch.cuda.is_available() else "cpu" | |
MODEL_ID = "jvalero/wav2vec2-base-music_genre_classifier" | |
pipe = pipeline( | |
task="audio-classification", | |
model=MODEL_ID, | |
chunk_length_s=30, | |
device=device, | |
) | |
id2label = { | |
"LABEL_0" : 'drumbass', | |
"LABEL_1" : 'dubtechno', | |
"LABEL_2": 'dupstep', | |
"LABEL_3":'hardcore_breaks', | |
"LABEL_4": 'house', | |
"LABEL_5":'psytrance', | |
"LABEL_6" : 'techno', | |
"LABEL_7":'ukgarage' | |
} | |
def get_edm(filepath): | |
output = pipe( | |
filepath, | |
max_new_tokens=256, | |
chunk_length_s=30, | |
batch_size=8, | |
) | |
return id2label[output[0]["label"]] | |
demo = gr.Blocks() | |
demo = gr.Blocks() | |
file_transcribe = gr.Interface( | |
fn=get_edm, | |
inputs=[ | |
gr.Audio(sources="upload", label="Audio file", type="filepath"), | |
], | |
outputs="label", | |
title="EDM genre classificator", | |
description=( | |
"Get the genre of your song! Demo uses the" | |
f" checkpoint [{MODEL_ID}](https://huggingface.co/{MODEL_ID}) and 🤗 Transformers to get the condition of audio files" | |
" of arbitrary length. \nThe audio will be classified into one of the following: ['drumbass', 'dubtechno', 'dupstep', 'hardcore_breaks', 'house', 'psytrance', 'techno', 'ukgarage']" | |
), | |
examples=[ | |
["./example1.mp3"], | |
["./example2.mp3"], | |
["./example3.mp3"], | |
["./example4.mp3"], | |
["./example5.mp3"], | |
["./example6.mp3"], | |
], | |
cache_examples=True, | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([file_transcribe], ["Get Viny Condition"]) | |
demo.launch() | |