File size: 1,446 Bytes
1b1e8e6
02500bf
 
 
 
a4e0bf3
02500bf
804f975
1b1e8e6
23b03c5
1b1e8e6
a4e0bf3
 
 
 
 
 
1b1e8e6
23b03c5
1b1e8e6
 
 
 
 
 
17734e0
1b1e8e6
 
 
 
 
a4e0bf3
 
 
1b1e8e6
23b03c5
a4e0bf3
fecc6b0
a4e0bf3
0c21d1d
88cf164
a4e0bf3
23b03c5
615788f
23b03c5
a4e0bf3
 
5892808
 
a4e0bf3
 
 
1b1e8e6
 
46d22b1
1b34d2e
46d22b1
b0208a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from transformers import pipeline
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr
import gradio as gr

device = 0 if torch.cuda.is_available() else "cpu"

MODEL_ID = "jvalero/wav2vec2-base-music_genre_classifier"  

pipe = pipeline(
    task="audio-classification",
    model=MODEL_ID,
    chunk_length_s=30,
    device=device,
)

def get_edm(filepath):
    output = pipe(
        filepath,
        max_new_tokens=256,
        chunk_length_s=30,
        batch_size=8,
    )
    return output[0]["label"]


demo = gr.Blocks()



demo = gr.Blocks()

file_transcribe = gr.Interface(
    fn=get_edm,
    inputs=[
        gr.Audio(sources="upload", label="Audio file", type="filepath"),
    ],
    outputs="label",
    title="EDM genre classificator",
    description=(
        "Get the genre of your song! Demo uses the"
        f" checkpoint [{MODEL_ID}](https://huggingface.co/{MODEL_ID}) and 🤗 Transformers to get the condition of audio files"
        " of arbitrary length. \nThe audio will be classified into one of the following: ['drumbass', 'dubtechno', 'dupstep', 'hardcore_breaks', 'house', 'psytrance', 'techno', 'ukgarage']"
    ),
    examples=[
        ["./example.mp3"],
        ["./example1.mp3"],
    ],
    cache_examples=True,
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([file_transcribe], ["Get Viny Condition"])

demo.launch()