Spaces:
Sleeping
Sleeping
File size: 4,605 Bytes
e1e27eb e9daf29 e1e27eb e9daf29 e1e27eb e9daf29 e1e27eb e9daf29 e1e27eb e9daf29 e1e27eb e9daf29 e1e27eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import gradio as gr
# from gradio import ChatMessage
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import numpy as np
import librosa
import json
import os
from huggingface_hub import InferenceClient
hf_token = os.getenv("HF_Token")
# def get_token():
# with open("credentials.json","r") as f:
# credentials = json.load(f)
# return credentials['token']
# hf_token = get_token()
client = InferenceClient(
"meta-llama/Meta-Llama-3-8B-Instruct",
token=hf_token)
def chat(audio, chat:list, asr_model:str):
if asr_model == "openai/whisper-large-v2":
transcription = transcribe_whisper_large_v2(audio)
elif asr_model == "openai/whisper-tiny.en":
transcription = transcribe_whisper_tiny_en(audio)
else:
raise ValueError(f"No Model found with the given choice: {asr_model}")
chat.append({'role':'user','content':transcription})
response = client.chat_completion(
messages=chat,
max_tokens=500,
stream=False,
).choices[0].message.content
chat.append({'role':'assistant','content':response})
return chat
def transcribe_whisper_large_v2(audio):
sr, audio = audio
audio = audio.astype(np.float32)
if len(audio.shape) > 2 and audio.shape[1] > 1:
audio = np.mean(audio, axis=1)
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
transcription = processor.tokenizer.normalize(transcription[0])
return transcription
def transcribe_whisper_tiny_en(audio):
sr, audio = audio
audio = audio.astype(np.float32)
if len(audio.shape) > 2 and audio.shape[1] > 1:
audio = np.mean(audio, axis=1)
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
transcription = processor.tokenizer.normalize(transcription[0])
return transcription
def load_model(asr_model_choice:str):
global processor
global model
global model_flag
if asr_model_choice == "openai/whisper-large-v2":
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
model.config.forced_decoder_ids = None
model_flag = "openai/whisper-large-v2"
elif asr_model_choice == "openai/whisper-tiny.en":
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
model_flag = "openai/whisper-tiny.en"
print("Model Loaded: ",model_flag)
with gr.Blocks() as app:
gr.Markdown("# VoiceBot")
gr.Markdown("Welcome to VoiceBot π, here is how it works")
gr.Markdown("This Bot can only be interacted with through your voice. Press record and say something, after stopping the recoding your audio will be processed directly. You have the option to choose between different models. The model you choose influences the Bot's perfomance to understand what you have said. A better perfomance also comes with longer waiting time. π")
gr.Markdown("Have fun playing arround π")
gr.Markdown("If you have any wishes for models or and idea, feel free to let me know π")
chatbot = gr.Chatbot(
value=[{
'role':'System',
'content':'You are a helpfull assitant for an Audio based Chatbot. You are helping Users to order their notes and thoughts.'
}],
bubble_full_width=False,
type="messages"
)
with gr.Row():
audio_input = gr.Audio(
sources=['microphone'],
interactive=True,
scale=8
)
with gr.Accordion(label="Settings", open=False):
asr_model_choice = gr.Radio(
label="Select ASR Model",
choices=["openai/whisper-large-v2","openai/whisper-tiny.en"],
value="openai/whisper-tiny.en"
)
asr_model_choice.change(load_model, asr_model_choice)
# Event listener for when the audio recording stops
audio_input.stop_recording(fn=chat, inputs=[audio_input, chatbot, asr_model_choice], outputs=chatbot)
app.launch() |