Spaces:
Running
Running
from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor | |
import streamlit as st | |
import os | |
from PIL import Image | |
import requests | |
import torch | |
import json | |
from torchvision import io | |
from typing import Dict | |
import re | |
def init_model(): | |
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True) | |
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id) | |
model = model.eval() | |
return model, tokenizer | |
def init_gpu_model(): | |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id) | |
model = model.eval().cuda() | |
return model, tokenizer | |
def init_qwen_model(): | |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", device_map="cpu", torch_dtype=torch.float16) | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
return model, processor | |
def get_quen_op(image_file, model, processor): | |
try: | |
image = Image.open(image_file).convert('RGB') | |
conversation = [ | |
{ | |
"role":"user", | |
"content":[ | |
{ | |
"type":"image", | |
}, | |
{ | |
"type":"text", | |
"text":"Extract text from this image." | |
} | |
] | |
} | |
] | |
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) | |
inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt") | |
inputs = {k: v.to(torch.float32) if torch.is_floating_point(v) else v for k, v in inputs.items()} | |
generation_config = { | |
"max_new_tokens": 32, | |
"do_sample": False, | |
"top_k": 20, | |
"top_p": 0.90, | |
"temperature": 0.4, | |
"num_return_sequences": 1, | |
"pad_token_id": processor.tokenizer.pad_token_id, | |
"eos_token_id": processor.tokenizer.eos_token_id, | |
} | |
output_ids = model.generate(**inputs, **generation_config) | |
if 'input_ids' in inputs: | |
generated_ids = output_ids[:, inputs['input_ids'].shape[1]:] | |
else: | |
generated_ids = output_ids | |
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
return output_text[:] if output_text else "No text extracted from the image." | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
def get_text(image_file, _model, _tokenizer): | |
res = _model.chat(_tokenizer, image_file, ocr_type='ocr') | |
return res | |
def highlight_text(text, search_term): | |
if not search_term: | |
return text | |
pattern = re.compile(re.escape(search_term), re.IGNORECASE) | |
return pattern.sub(lambda m: f'<span style="background-color: grey;">{m.group()}</span>', text) | |
def save_text_to_json(file_name, text_data): | |
"""Save the extracted text into a JSON file.""" | |
with open(file_name, 'w') as json_file: | |
json.dump({"extracted_text": text_data}, json_file, indent=4) | |
st.success(f"Text saved to {file_name}") | |
st.title("Extract text from the image using - GOT-OCR2.0 and search keyword") | |
st.write("Upload an image") | |
MODEL, PROCESSOR = init_model() | |
image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg']) | |
if image_file: | |
if not os.path.exists("images"): | |
os.makedirs("images") | |
with open(f"images/{image_file.name}", "wb") as f: | |
f.write(image_file.getbuffer()) | |
image_file = f"images/{image_file.name}" | |
text = get_text(image_file, MODEL, PROCESSOR) | |
print(text) | |
# Add search functionality | |
search_term = st.text_input("Enter a word or phrase to search:") | |
highlighted_text = highlight_text(text, search_term) | |
st.markdown(highlighted_text, unsafe_allow_html=True) | |
# Save the extracted text in JSON | |
json_file_path = f"{image_file}_extracted.json" | |
save_text_to_json(json_file_path, text) |