justheuristic commited on
Commit
4c16a19
·
1 Parent(s): 1e25943

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -16
app.py CHANGED
@@ -7,29 +7,22 @@ from src.client import DistributedBloomForCausalLM
7
 
8
  INITIAL_PEERS = ['/ip4/193.106.95.184/tcp/443/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs']
9
 
10
- import hivemind
11
  dht1 = hivemind.DHT(start=True)
12
  dht2 = hivemind.DHT(start=True, initial_peers=dht1.get_visible_maddrs())
13
 
14
 
15
  tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3")
16
- #model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32)
17
 
18
  def inference(text, seq_length=1):
19
- #input_ids = tokenizer(text, return_tensors='pt')['input_ids']
20
- #with torch.inference_mode(), model.transformer.h.inference_session() as remote_transformer:
21
- # for i in range(seq_length):
22
- # h = model.transformer.word_embeddings(input_ids)
23
- # h = model.transformer.word_embeddings_layernorm(h)
24
- #import os;
25
- #os.system("wget http://193.106.95.184/p2p-keygen")
26
- #return text[::-1] + '\n' + '\n'.join(os.listdir('.'))
27
- try:
28
- dht3 = hivemind.DHT(start=True, initial_peers=INITIAL_PEERS)
29
 
30
- assert dht1.store('key', text[::-1], hivemind.get_dht_time() + 999)
31
- return repr(dht2.get('key'))
32
- except Exception as e:
33
- return repr(e)
34
  iface = gr.Interface(fn=inference, inputs="text", outputs="text")
35
  iface.launch()
 
7
 
8
  INITIAL_PEERS = ['/ip4/193.106.95.184/tcp/443/p2p/QmSXDXLeSMXjS4YerDrdn1zpGQaNzkZ9ogN2SoAEyAdDhs']
9
 
10
+ import hivemind # test that DHT instances work on localhost
11
  dht1 = hivemind.DHT(start=True)
12
  dht2 = hivemind.DHT(start=True, initial_peers=dht1.get_visible_maddrs())
13
 
14
 
15
  tokenizer = transformers.BloomTokenizerFast.from_pretrained("bigscience/test-bloomd-6b3")
16
+ model = DistributedBloomForCausalLM.from_pretrained("bigscience/test-bloomd-6b3", initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32)
17
 
18
  def inference(text, seq_length=1):
19
+ input_ids = tokenizer(text, return_tensors='pt')['input_ids']
20
+ with torch.inference_mode(), model.transformer.h.inference_session() as remote_transformer:
21
+ for i in range(seq_length):
22
+ h = model.transformer.word_embeddings(input_ids)
23
+ h = model.transformer.word_embeddings_layernorm(h)
24
+ h = remote_transformer.step(h)
25
+ return repr(h)
 
 
 
26
 
 
 
 
 
27
  iface = gr.Interface(fn=inference, inputs="text", outputs="text")
28
  iface.launch()