table-extraction / models /metrics /classification.py
jurgendn's picture
[Demo Gradio] Add to Huggingface Space
4c41a36
raw
history blame
1.26 kB
from typing import Dict
import torch
from torchmetrics import functional as FM
def classification_metrics(
preds: torch.Tensor,
target: torch.Tensor,
num_classes: int,
average: str = 'macro',
task: str = 'multiclass') -> Dict[str, torch.Tensor]:
"""
get_classification_metrics
Return some metrics evaluation the classification task
Parameters
----------
preds : torch.Tensor
logits, probs
target : torch.Tensor
targets label
Returns
-------
Dict[str, torch.Tensor]
_description_
"""
f1 = FM.f1_score(preds=preds,
target=target,
num_classes=num_classes,
task=task,
average=average)
recall = FM.recall(preds=preds,
target=target,
num_classes=num_classes,
task=task,
average=average)
precision = FM.precision(preds=preds,
target=target,
num_classes=num_classes,
task=task,
average=average)
return dict(f1=f1, precision=precision, recall=recall)