Create gradio_inference.py
Browse files- gradio_inference.py +93 -94
gradio_inference.py
CHANGED
@@ -1,94 +1,93 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from transformers import AutoTokenizer, BertForSequenceClassification, AutoModel
|
4 |
-
from torch import nn
|
5 |
-
import re
|
6 |
-
|
7 |
-
|
8 |
-
def paragraph_leveling(text):
|
9 |
-
model_name = "./trained_model/fine_tunning_encoder_v2"
|
10 |
-
model = AutoModel.from_pretrained(model_name)
|
11 |
-
model.to('cuda')
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained('zzxslp/RadBERT-RoBERTa-4m')
|
13 |
-
|
14 |
-
class MLP(nn.Module):
|
15 |
-
def __init__(self, target_size=3, input_size=768):
|
16 |
-
super(MLP, self).__init__()
|
17 |
-
self.num_classes = target_size
|
18 |
-
self.input_size = input_size
|
19 |
-
self.fc1 = nn.Linear(input_size, target_size)
|
20 |
-
|
21 |
-
def forward(self, x):
|
22 |
-
out = self.fc1(x)
|
23 |
-
return out
|
24 |
-
|
25 |
-
classifier = MLP(target_size=3, input_size=768)
|
26 |
-
classifier.load_state_dict(torch.load('./trained_model/fine_tunning_classifier'))
|
27 |
-
classifier.cuda()
|
28 |
-
classifier.eval()
|
29 |
-
|
30 |
-
output_list = []
|
31 |
-
text_list = text.split(".")
|
32 |
-
result = []
|
33 |
-
|
34 |
-
# output_list.append(('Label: ', None))
|
35 |
-
# output_list.append(('abnormal', 'abnormal'))
|
36 |
-
# output_list.append(('normal', 'normal'))
|
37 |
-
# # output_list.append((' ', 'normal'))
|
38 |
-
# output_list.append(('not much information', 'not much information'))
|
39 |
-
# # output_list.append((' ', 'not much information'))
|
40 |
-
output_list.append(("\n", None))
|
41 |
-
|
42 |
-
for idx_sentence in text_list:
|
43 |
-
train_encoding = tokenizer(
|
44 |
-
idx_sentence,
|
45 |
-
return_tensors='pt',
|
46 |
-
padding='max_length',
|
47 |
-
truncation=True,
|
48 |
-
max_length=120)
|
49 |
-
output = model(**train_encoding.to('cuda'))
|
50 |
-
output = classifier(output[1])
|
51 |
-
output = output[0]
|
52 |
-
|
53 |
-
if output.argmax(-1) == 0:
|
54 |
-
output_list.append((idx_sentence, 'abnormal'))
|
55 |
-
result.append(0)
|
56 |
-
elif output.argmax(-1) == 1:
|
57 |
-
output_list.append((idx_sentence, 'normal'))
|
58 |
-
result.append(1)
|
59 |
-
else:
|
60 |
-
output_list.append((idx_sentence, 'not much information'))
|
61 |
-
result.append(2)
|
62 |
-
|
63 |
-
output_list.append(('\n', None))
|
64 |
-
if 0 in result:
|
65 |
-
output_list.append(('FINAL LABEL: ', None))
|
66 |
-
output_list.append(('ABNORMAL', 'abnormal'))
|
67 |
-
|
68 |
-
else:
|
69 |
-
output_list.append(('FINAL LABEL: ', None))
|
70 |
-
output_list.append(('NORMAL', 'normal'))
|
71 |
-
|
72 |
-
return output_list
|
73 |
-
|
74 |
-
|
75 |
-
demo = gr.Interface(
|
76 |
-
paragraph_leveling,
|
77 |
-
[
|
78 |
-
gr.Textbox(
|
79 |
-
label="Medical Report",
|
80 |
-
info="You can put any types of medical report",
|
81 |
-
lines=20,
|
82 |
-
value=" ",
|
83 |
-
),
|
84 |
-
],
|
85 |
-
gr.HighlightedText(
|
86 |
-
label="labeling",
|
87 |
-
show_legend = True,
|
88 |
-
show_label = True,
|
89 |
-
color_map={"abnormal": "violet", "normal": "lightgreen", "not much information": "lightgray"}),
|
90 |
-
theme=gr.themes.Base()
|
91 |
-
)
|
92 |
-
if __name__ == "__main__":
|
93 |
-
demo.launch(share=True)
|
94 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, BertForSequenceClassification, AutoModel
|
4 |
+
from torch import nn
|
5 |
+
import re
|
6 |
+
|
7 |
+
|
8 |
+
def paragraph_leveling(text):
|
9 |
+
model_name = "./trained_model/fine_tunning_encoder_v2"
|
10 |
+
model = AutoModel.from_pretrained(model_name)
|
11 |
+
model.to('cuda')
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained('zzxslp/RadBERT-RoBERTa-4m')
|
13 |
+
|
14 |
+
class MLP(nn.Module):
|
15 |
+
def __init__(self, target_size=3, input_size=768):
|
16 |
+
super(MLP, self).__init__()
|
17 |
+
self.num_classes = target_size
|
18 |
+
self.input_size = input_size
|
19 |
+
self.fc1 = nn.Linear(input_size, target_size)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
out = self.fc1(x)
|
23 |
+
return out
|
24 |
+
|
25 |
+
classifier = MLP(target_size=3, input_size=768)
|
26 |
+
classifier.load_state_dict(torch.load('./trained_model/fine_tunning_classifier'))
|
27 |
+
classifier.cuda()
|
28 |
+
classifier.eval()
|
29 |
+
|
30 |
+
output_list = []
|
31 |
+
text_list = text.split(".")
|
32 |
+
result = []
|
33 |
+
|
34 |
+
# output_list.append(('Label: ', None))
|
35 |
+
# output_list.append(('abnormal', 'abnormal'))
|
36 |
+
# output_list.append(('normal', 'normal'))
|
37 |
+
# # output_list.append((' ', 'normal'))
|
38 |
+
# output_list.append(('not much information', 'not much information'))
|
39 |
+
# # output_list.append((' ', 'not much information'))
|
40 |
+
output_list.append(("\n", None))
|
41 |
+
|
42 |
+
for idx_sentence in text_list:
|
43 |
+
train_encoding = tokenizer(
|
44 |
+
idx_sentence,
|
45 |
+
return_tensors='pt',
|
46 |
+
padding='max_length',
|
47 |
+
truncation=True,
|
48 |
+
max_length=120)
|
49 |
+
output = model(**train_encoding.to('cuda'))
|
50 |
+
output = classifier(output[1])
|
51 |
+
output = output[0]
|
52 |
+
|
53 |
+
if output.argmax(-1) == 0:
|
54 |
+
output_list.append((idx_sentence, 'abnormal'))
|
55 |
+
result.append(0)
|
56 |
+
elif output.argmax(-1) == 1:
|
57 |
+
output_list.append((idx_sentence, 'normal'))
|
58 |
+
result.append(1)
|
59 |
+
else:
|
60 |
+
output_list.append((idx_sentence, 'not much information'))
|
61 |
+
result.append(2)
|
62 |
+
|
63 |
+
output_list.append(('\n', None))
|
64 |
+
if 0 in result:
|
65 |
+
output_list.append(('FINAL LABEL: ', None))
|
66 |
+
output_list.append(('ABNORMAL', 'abnormal'))
|
67 |
+
|
68 |
+
else:
|
69 |
+
output_list.append(('FINAL LABEL: ', None))
|
70 |
+
output_list.append(('NORMAL', 'normal'))
|
71 |
+
|
72 |
+
return output_list
|
73 |
+
|
74 |
+
|
75 |
+
demo = gr.Interface(
|
76 |
+
paragraph_leveling,
|
77 |
+
[
|
78 |
+
gr.Textbox(
|
79 |
+
label="Medical Report",
|
80 |
+
info="You can put any types of medical report",
|
81 |
+
lines=20,
|
82 |
+
value=" ",
|
83 |
+
),
|
84 |
+
],
|
85 |
+
gr.HighlightedText(
|
86 |
+
label="labeling",
|
87 |
+
show_legend = True,
|
88 |
+
show_label = True,
|
89 |
+
color_map={"abnormal": "violet", "normal": "lightgreen", "not much information": "lightgray"}),
|
90 |
+
theme=gr.themes.Base()
|
91 |
+
)
|
92 |
+
if __name__ == "__main__":
|
93 |
+
demo.launch(share=True)
|
|