Spaces:
Runtime error
Runtime error
import py_vncorenlp | |
from sentence_transformers import CrossEncoder | |
py_vncorenlp.download_model(save_dir='/absolute/path/to/vncorenlp') | |
rdrsegmenter = py_vncorenlp.VnCoreNLP(annotators=["wseg"], save_dir='/absolute/path/to/vncorenlp') | |
def rerank(query,sentences): | |
tokenized_query = rdrsegmenter.word_segment(query) | |
tokenized_sentences = [rdrsegmenter.word_segment(sent) for sent in sentences] | |
tokenized_pairs = [[tokenized_query, sent] for sent in tokenized_sentences] | |
MODEL_ID = 'itdainb/PhoRanker' | |
MAX_LENGTH = 512 | |
model = CrossEncoder(MODEL_ID, max_length=MAX_LENGTH) | |
# For fp16 usage | |
model.model.half() | |
scores = model.predict(tokenized_pairs) | |
# 0.982, 0.2444, 0.9253 | |
'print(scores)' | |
return scores | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=rerank, | |
inputs=[ | |
gr.Textbox(label="Query", placeholder="Enter your query"), | |
gr.Textbox(label="Documents (one per line)", lines=5, placeholder="Enter documents to rank"), | |
], | |
outputs=gr.Textbox(label="Reranked Documents"), | |
title="MonoT5 Reranking", | |
description="Provide a query and a list of documents to rerank them using MonoT5." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() | |