|
import os |
|
|
|
|
|
|
|
from trainer import Trainer, TrainerArgs |
|
|
|
|
|
from TTS.tts.configs.glow_tts_config import GlowTTSConfig |
|
|
|
|
|
from TTS.tts.configs.shared_configs import BaseAudioConfig, BaseDatasetConfig, CharactersConfig |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.models.glow_tts import GlowTTS |
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
|
|
output_path = "/storage/output-glowtts/" |
|
|
|
|
|
|
|
|
|
|
|
dataset_config = BaseDatasetConfig( |
|
formatter="bel_tts_formatter", |
|
meta_file_train="ipa_final_dataset.csv", |
|
path=os.path.join(output_path, "/storage/filtered_dataset/"), |
|
) |
|
|
|
characters = CharactersConfig( |
|
characters_class="TTS.tts.utils.text.characters.Graphemes", |
|
pad="_", |
|
eos="~", |
|
bos="^", |
|
blank="@", |
|
characters="Iabdfgijklmnprstuvxzɔɛɣɨɫɱʂʐʲˈː̯͡β", |
|
punctuations="!,.?: -‒–—…", |
|
) |
|
|
|
audio_config = BaseAudioConfig( |
|
mel_fmin=50, |
|
mel_fmax=8000, |
|
hop_length=256, |
|
stats_path="/storage/TTS/scale_stats.npy", |
|
) |
|
|
|
|
|
|
|
config = GlowTTSConfig( |
|
batch_size=96, |
|
eval_batch_size=32, |
|
num_loader_workers=8, |
|
num_eval_loader_workers=8, |
|
use_noise_augment=True, |
|
run_eval=True, |
|
test_delay_epochs=-1, |
|
epochs=1000, |
|
print_step=50, |
|
print_eval=True, |
|
output_path=output_path, |
|
add_blank=True, |
|
datasets=[dataset_config], |
|
|
|
enable_eos_bos_chars=True, |
|
mixed_precision=False, |
|
save_step=10000, |
|
save_n_checkpoints=2, |
|
save_best_after=5000, |
|
text_cleaner="no_cleaners", |
|
audio=audio_config, |
|
test_sentences=[], |
|
use_phonemes=True, |
|
phoneme_language="be", |
|
) |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
ap = AudioProcessor.init_from_config(config) |
|
|
|
|
|
|
|
|
|
tokenizer, config = TTSTokenizer.init_from_config(config) |
|
|
|
|
|
|
|
|
|
|
|
|
|
train_samples, eval_samples = load_tts_samples( |
|
dataset_config, |
|
eval_split=True, |
|
eval_split_max_size=config.eval_split_max_size, |
|
eval_split_size=config.eval_split_size, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
model = GlowTTS(config, ap, tokenizer, speaker_manager=None) |
|
|
|
|
|
|
|
|
|
trainer = Trainer( |
|
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples |
|
) |
|
|
|
|
|
trainer.fit() |
|
|