File size: 13,695 Bytes
bcb84e7
6249bc9
8400511
6249bc9
 
bcb84e7
6249bc9
 
595153d
bcb84e7
6249bc9
 
595153d
6249bc9
 
5506a96
6249bc9
8400511
777d5c7
8400511
595153d
 
bcb84e7
6249bc9
25733b9
6249bc9
 
 
 
 
 
 
 
 
 
 
 
595153d
bcb84e7
595153d
bcb84e7
25733b9
bcb84e7
595153d
 
 
 
 
 
 
 
6249bc9
 
 
 
 
 
 
 
 
 
595153d
 
6249bc9
595153d
 
6249bc9
595153d
 
 
 
6249bc9
 
595153d
 
 
 
 
02fcd9e
 
 
 
 
595153d
 
 
6249bc9
 
8400511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6249bc9
595153d
d5c9693
6249bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595153d
 
 
 
 
6249bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5506a96
6249bc9
 
 
f765cc5
5506a96
6249bc9
 
 
 
16a0358
 
 
 
 
 
 
 
6249bc9
 
bcb84e7
595153d
 
 
f765cc5
595153d
 
 
 
 
 
 
 
 
 
 
 
 
6249bc9
 
 
 
 
595153d
 
 
c0ec098
 
6249bc9
 
 
 
 
 
 
 
 
f765cc5
6249bc9
 
 
595153d
 
 
 
6249bc9
 
5506a96
 
 
 
 
02fcd9e
 
7102a57
02fcd9e
 
 
 
6249bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import gradio as gr
from typing import Any
import math

import torch
from transformers import pipeline
from diffusers import StableDiffusionPipeline
from TTS.api import TTS
import whisper

import utils
from youtubeaudioextractor import PytubeAudioExtractor
from transcriber import SpanishTranscriber, WhisperTranscriber
from textprocessor import TextProcessor
from videocreator import VideoCreator
from share_btn import community_icon_html, loading_icon_html, share_js

MAX_NUM_WORDS = 20000
MAX_CHUNK_LENGTH = 1000

spanish_transcribe_model = "juancopi81/whisper-medium-es"
languages = {"Spanish": "es", "English": "en"}

device = "cuda" if torch.cuda.is_available() else "cpu"
device_dict = {"cuda": 0, "cpu": -1}
dtype = torch.float16 if device == "cuda" else torch.float32

# Detect if code is running in Colab
is_colab = utils.is_google_colab()
colab_instruction = "" if is_colab else """
<p>You can skip the queue using Colab: 
<a href="">
<img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>"""
device_print = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"

# Initialize components
audio_extractor = PytubeAudioExtractor()
es_transcription_pipe = pipeline(
    task="automatic-speech-recognition",
    model=spanish_transcribe_model,
    chunk_length_s=30,
    device=device_dict[device],
)
es_transcription_pipe.model.config.forced_decoder_ids = es_transcription_pipe.tokenizer.get_decoder_prompt_ids(language="es",
                                                                                                               task="transcribe")
es_audio_transcriber = SpanishTranscriber(es_transcription_pipe)

en_transcription_pipe = whisper.load_model("base")

en_audio_transcriber = WhisperTranscriber(en_transcription_pipe)

openai_model = "text-davinci-003"
text_processor = TextProcessor(openai_model)

image_model_id = "runwayml/stable-diffusion-v1-5"
image_pipeline = StableDiffusionPipeline.from_pretrained(image_model_id,
                                                         torch_dtype=dtype,
                                                         revision="fp16")

image_pipeline = image_pipeline.to(device)

es_vo_model_name = TTS.list_models()[22]
en_vo_model_name = TTS.list_models()[8]
# Init TTS
es_tts = TTS(es_vo_model_name)
en_tts = TTS(en_vo_model_name)

def datapipeline(url: str, 
                 video_language: str,
                 summary_language: str,
                 video_styles: str) -> Any:
    audio_path_file = audio_extractor.extract(url)
    print(f"Audio file created at: {audio_path_file}")
    # Select transcriber
    if video_language == "Spanish":
        audio_transcriber = es_audio_transcriber
    elif video_language == "English":
        audio_transcriber = en_audio_transcriber
    else:
        return "Language not supported"
    if summary_language == "Spanish":
        video_creator = VideoCreator(es_tts, image_pipeline)
    elif summary_language == "English":
        video_creator = VideoCreator(en_tts, image_pipeline)
    else:
        return "Language not supported"
    transcribed_text = audio_transcriber.transcribe(audio_path_file)
    print("Audio transcription ready!")
    # Get total number of words in text
    num_words_transcription = len(transcribed_text.split())

    if num_words_transcription > MAX_NUM_WORDS:
        print("to add return here")

    if num_words_transcription > MAX_CHUNK_LENGTH:
        num_chunks = math.ceil(num_words_transcription / MAX_CHUNK_LENGTH)
        num_words_per_chunk = num_words_transcription // num_chunks
        chunks = utils.splitter(num_words_per_chunk, transcribed_text)
        json_scenes = {}
        for chunk in chunks:
            if len(chunk.split()) > 50:
                max_key = max(json_scenes.keys(), default=0)
                chunk_scenes = text_processor.get_json_scenes(chunk,
                                                              summary_language)
                chunk_scenes = {k+max_key: v for k, v in chunk_scenes.items()}
                json_scenes.update(chunk_scenes)
    else:
        json_scenes = text_processor.get_json_scenes(transcribed_text,
                                                     summary_language)

    print("Scenes ready")
    video = video_creator.create_video(json_scenes, video_styles)
    print("Video at", video)
    return video, video

css = """
        a {
            color: inherit;
            text-decoration: underline;
        }
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: #000000;
            background: #000000;
        }
        input[type='range'] {
            accent-color: #000000;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        #container-advanced-btns{
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
            align-items: center;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
        }
        #share-btn * {
            all: unset;
        }
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #generated_id{
            min-height: 700px
        }
        #setting_id{
          margin-bottom: 12px;
          text-align: center;
          font-weight: 900;
        }
"""
block = gr.Blocks(css=css)

with block as demo:
    gr.HTML(
        f"""
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                  YouTube to Video Summary
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
                Enter the URL of a YouTube video (in Spanish or English) and you'll recieve a video with an illustraded summary (in Spanish or English, it works as translator).
                It works for audio books, history lessons, etc. Try it out with a short video (less than 4 minutes). SEE SOME EXAMPLES AT THE BOTTOM.
              </p>
              <p style="margin-bottom: 10px; font-size: 94%">
                Running on <b>{device_print}</b>
              </p>
              </p>
                <p style="margin-bottom: 10px; font-size: 94%">
                You can buy me a coffee to support this space: 
                <span style="display: flex;align-items: center;justify-content: center;height: 30px;">
                <a href="https://www.buymeacoffee.com/juancopi81j">
                <img src="https://badgen.net/badge/icon/Buy%20Me%20A%20Coffee?icon=buymeacoffee&label" alt="Buy me a coffee"></a>.
                </span>
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row(elem_id="setting_id").style(mobile_collapse=False, equal_height=True):
              gr.HTML("<h1>Settings</h1>")
            with gr.Row():
              with gr.Column():
                video_language = gr.Radio(choices=["Spanish", "English"],
                                          label="Language of your input video:",
                                          value="Spanish")
              with gr.Column():
                summary_language = gr.Radio(choices=["Spanish", "English"],
                                            label="Language of your output video:",
                                            value="Spanish")
            with gr.Row():
              video_styles = gr.Textbox(label="(OPTIONAL) Enter the styles for your ouput video",
                                        value="",
                                        placeholder="illustration, highly detailed, digital painting, concept art, matte, art by wlop and artgerm and greg rutkowski and alphonse mucha, masterpiece")
    with gr.Group():
        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):

                url = gr.Textbox(
                    label="Enter the URL of the YouTubeVideo",
                    show_label=False,
                    max_lines=1,
                    placeholder="YouTube URL",
                    elem_id="prompt-in"
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=False,
                )
                btn = gr.Button("Run").style(
                    margin=False,
                    rounded=(False, True, True, False),
                )
        video_output = gr.Video(elem_id="output-video")
        file_output = gr.File()
        
        btn.click(datapipeline,
                  inputs=[url,
                          video_language,
                          summary_language,
                          video_styles],
                  outputs=[video_output, file_output])

    with gr.Group(elem_id="share-btn-container"):
            community_icon = gr.HTML(community_icon_html)
            loading_icon = gr.HTML(loading_icon_html)
            share_button = gr.Button("Share to community", elem_id="share-btn")
    share_button.click(None, [], [], _js=share_js)
    gr.Examples(
        examples=[["https://www.youtube.com/watch?v=c0i5016pB2Y", "English", "Spanish", "oil on painting"],
                  ["https://www.youtube.com/watch?v=Hk5evm1NgzA", "Spanish", "English", "trending on artstation pixiv makoto shinkai"],
                  ["https://www.youtube.com/watch?v=sRmmQBBln9Q", "Spanish", "Spanish", "Hyper real, 4k"],
                  ["https://www.youtube.com/watch?v=qz4Wc48KITA", "Spanish", "English", "detailed art by kay nielsen and walter crane, illustration style, watercolor"]],
        inputs=[url, video_language, summary_language, video_styles]
    )
    gr.HTML(
            """
                <div class="footer">
                    <p>This demos is part of the Whisper Sprint (Dec. 2022).</a>
                    </p>
                </div>
           """
        )
    gr.Markdown('''
      [![Twitter Follow](https://img.shields.io/twitter/follow/juancopi81?style=social)](https://twitter.com/juancopi81)
      ![visitors](https://visitor-badge.glitch.me/badge?page_id=Juancopi81.yt-illustraded-summary)
    ''')

if not is_colab:
    demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)