File size: 6,113 Bytes
84abe8d
c57d2c4
84abe8d
 
 
 
 
 
 
52f0ac3
 
84abe8d
 
1f54256
728f4a4
84abe8d
 
 
 
 
 
 
 
 
 
 
7e54686
84abe8d
 
a96702e
84abe8d
 
 
4f00174
 
 
 
 
84abe8d
99c3774
 
 
 
 
0227b56
84abe8d
7fda6b6
99c3774
 
 
84abe8d
20ea2d5
14ffe48
7fda6b6
7e54686
c05488c
5906b40
c05488c
 
 
 
 
 
5906b40
 
84abe8d
 
99c3774
 
 
 
 
 
 
 
 
 
975362a
 
 
 
99c3774
 
 
 
 
 
 
 
84abe8d
 
 
 
 
6c9356d
 
84abe8d
 
 
 
 
 
 
 
 
 
1c50533
84abe8d
1c50533
 
 
 
 
63d6432
84abe8d
1c50533
a238253
1c50533
84abe8d
1c50533
84abe8d
 
 
 
 
 
 
 
 
 
 
 
1c50533
 
 
14ffe48
 
84abe8d
14ffe48
 
 
 
84abe8d
b05c8b9
84abe8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae1317a
 
 
 
 
 
 
 
5a7ca0f
ae1317a
 
 
 
 
 
 
ba6275b
 
 
 
84abe8d
 
d2a4368
84abe8d
59c047e
84abe8d
 
 
95c7150
d2a4368
84abe8d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import time
import gradio as gr
import openai

from langdetect import detect 
from gtts import gTTS
from pdfminer.high_level import extract_text

#any vector server should work, trying pinecone first
import pinecone

#langchain part
import spacy
import tiktoken
from langchain.llms import OpenAI
from langchain.text_splitter import SpacyTextSplitter
from langchain.document_loaders import TextLoader
from langchain.document_loaders import DirectoryLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Pinecone


openai.api_key = os.environ['OPENAI_API_KEY']
pinecone_key = os.environ['PINECONE_API_KEY']
pinecone_environment='us-west1-gcp-free'


user_db = {os.environ['username1']: os.environ['password1']}

messages = [{"role": "system", "content": 'You are a helpful assistant.'}]

#load up spacy

nlp = spacy.load("en_core_web_sm")



def init_pinecone():
    pinecone.init(api_key=pinecone_key, environment=pinecone_environment)
    return




def process_file(index_name, dir):

    init_pinecone()

    #using openai embedding hence dim = 1536
    pinecone.create_index(index_name, dimension=1536, metric="cosine")
    #time.sleep(5)
    
    embeddings = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_API_KEY'])
    splter = SpacyTextSplitter(chunk_size=1000,chunk_overlap=200)

    for doc in dir:
        loader = TextLoader(doc.name , encoding='utf8')
        content = loader.load()
        split_text = splter.split_documents(content)
        for text in split_text:
        	Pinecone.from_documents([text], embeddings, index_name=index_name)

    #pipeline='zh_core_web_sm'
    

    return 


def list_pinecone():
    init_pinecone()
    return pinecone.list_indexes()


def show_pinecone(index_name):
    init_pinecone()
    #return pinecone.describe_index(index_name)
    index = pinecone.Index(index_name)
    stats = index.describe_index_stats()
    return stats



def delete_pinecone(index_name):
    init_pinecone()
    pinecone.delete_index(index_name)
    return








def roleChoice(role):
    global messages
    messages = [{"role": "system", "content": role}]
    return "role:" + role






def talk2file(index_name, text):
    global messages
    
    #same as filesearch
    init_pinecone()
    embeddings = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_API_KEY'])
    docsearch = Pinecone.from_existing_index(index_name, embeddings)
    docs = docsearch.similarity_search(text)

    
    prompt = text + ", 根据以下文本: \n\n" + docs[0].page_content 
    messages.append({"role": "user", "content": prompt})

    response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)

    system_message = response["choices"][0]["message"]
    messages.append(system_message)

    chats = ""
    for msg in messages:
        if msg['role'] != 'system':
            chats += msg['role'] + ": " + msg['content'] + "\n\n"

    return chats





def fileSearch(index_name, prompt):
    global messages

    init_pinecone()
    embeddings = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_API_KEY'])
    docsearch = Pinecone.from_existing_index(index_name, embeddings)
    docs = docsearch.similarity_search(prompt)

    return "Content in file: \n\n" + docs[0].page_content + "\n\n"



def clear():
    global messages
    messages = [{"role": "system", "content": 'You are a helpful technology assistant.'}]
    return
    
def show():
    global messages
    chats = ""
    for msg in messages:
        if msg['role'] != 'system':
            chats += msg['role'] + ": " + msg['content'] + "\n\n"

    return chats


with gr.Blocks() as chatHistory:
    gr.Markdown("Click the Clear button below to remove all the chat history.")
    clear_btn = gr.Button("Clear")
    clear_btn.click(fn=clear, inputs=None, outputs=None, queue=False)

    gr.Markdown("Click the Display button below to show all the chat history.")
    show_out = gr.Textbox()
    show_btn = gr.Button("Display")
    show_btn.click(fn=show, inputs=None, outputs=show_out, queue=False)


#pinecone tools
with gr.Blocks() as pinecone_tools: 
    pinecone_list = gr.Textbox()
    list = gr.Button(value="List") 
    list.click(fn=list_pinecone, inputs=None, outputs=pinecone_list, queue=False)

    pinecone_delete_name = gr.Textbox()
    delete = gr.Button(value="Delete") 
    delete.click(fn=delete_pinecone, inputs=pinecone_delete_name, outputs=None, queue=False)

    pinecone_show_name = gr.Textbox()
    pinecone_info = gr.Textbox()
    show = gr.Button(value="Show") 
    show.click(fn=show_pinecone, inputs=pinecone_show_name, outputs=pinecone_info, queue=False)



    



role = gr.Interface(fn=roleChoice, inputs="text", outputs="text", description = "Choose your GPT roles, e.g. You are a helpful technology assistant. 你是一位 IT 架构师。 你是一位开发者关系顾问。你是一位机器学习工程师。你是一位高级 C++ 开发人员 ")
text = gr.Interface(fn=talk2file, inputs=["text", "text"], outputs="text")

vector_server = gr.Interface(fn=process_file, inputs=["text", gr.inputs.File(file_count="directory")], outputs="text")

#audio = gr.Interface(fn=audioGPT, inputs=gr.Audio(source="microphone", type="filepath"), outputs="text")
#siri = gr.Interface(fn=siriGPT, inputs=gr.Audio(source="microphone", type="filepath"), outputs = "audio")
file = gr.Interface(fn=fileSearch, inputs=["text", "text"], outputs="text", description = "Enter file name and prompt")
demo = gr.TabbedInterface([role, text, file, vector_server, pinecone_tools, chatHistory], [ "roleChoice", "Talk2File", "FileSearch", "VectorServer", "PineconeTools", "ChatHistory"])

if __name__ == "__main__":
    demo.launch(enable_queue=False, auth=lambda u, p: user_db.get(u) == p,
        auth_message="This is not designed to be used publicly as it links to a personal openAI API. However, you can copy my code and create your own multi-functional ChatGPT with your unique ID and password by utilizing the 'Repository secrets' feature in huggingface.")
    #demo.launch()