File size: 3,658 Bytes
df56e64
 
7e723b7
41e22e7
b908c2d
41e22e7
e4e9f4c
df56e64
e4e9f4c
aa09256
471f9fb
 
 
 
 
df56e64
e4e9f4c
 
7e723b7
471f9fb
 
 
e4e9f4c
 
471f9fb
41e22e7
471f9fb
 
 
 
 
41e22e7
471f9fb
 
6f3513c
 
 
 
 
 
 
 
 
 
 
 
 
41e22e7
598fec3
41e22e7
aa09256
f13aa60
aa09256
 
 
 
f13aa60
aa09256
 
 
2876d2b
aa09256
410b6d9
 
6f3513c
 
410b6d9
aa09256
41e22e7
cdd8f1e
c0eb133
471f9fb
 
41e22e7
aa09256
 
c0eb133
 
 
41e22e7
471f9fb
41e22e7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from chromadb.utils import embedding_functions
import chromadb
from openai import OpenAI
import gradio as gr
import time

anyscale_base_url = "https://api.endpoints.anyscale.com/v1"
multilingual_embeddings = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="jost/multilingual-e5-base-politics-de")

def predict(api_key, user_input, model1, model2, prompt_manipulation=None, direct_steering_option=None):
    # client = chromadb.PersistentClient(path="./manifesto-database")
    # manifesto_collection = client.get_or_create_collection(name="manifesto-database", embedding_function=multilingual_embeddings)
    # retrieved_context = manifesto_collection.query(query_texts=[user_input], n_results=3, where={"ideology": "Authoritarian-right"})
    # contexts = [context for context in retrieved_context['documents']]
    # print(contexts[0])
    
    prompt = f"""[INST] {user_input} [/INST]"""
    
    client = OpenAI(base_url=anyscale_base_url, api_key=api_key)
    
    response1 = client.completions.create(
        model=model1,
        prompt=prompt,
        temperature=0.7,
        max_tokens=1000).choices[0].text
    
    response2 = client.completions.create(
        model=model2,
        prompt=prompt,
        temperature=0.7,
        max_tokens=1000).choices[0].text

    return response1, response2

def update_dropdown_options(selected_option):
    if selected_option == "Impersonation (direct steering)":
        return ["Option 1", "Option 2"]

    elif selected_option == "Most similar RAG (indirect steering with related context)":
        return ["Option 1", "Option 2"]

    elif selected_option == "Random RAG (indirect steering with randomized context)":
        return ["Option 1", "Option 2"]

    else:
        return []

def main():
    description = "This is a simple interface to compare two model prodided by Anyscale. Please enter your API key and your message."
    with gr.Blocks() as demo:

        # Prompt manipulation dropdown
        with gr.Row():
            prompt_manipulation = gr.Dropdown(
                label="Prompt Manipulation",
                choices=[
                    "None",
                    "Impersonation (direct steering)", 
                    "Most similar RAG (indirect steering with related context)", 
                    "Random RAG (indirect steering with randomized context)"
                ]
            )

            # Conditional dropdown - options revealed based on ‘Prompt Manipulation’ selection
            direct_steering_option = gr.Dropdown(label="Direct Steering Option")
            prompt_manipulation.change(fn=update_dropdown_options, inputs=prompt_manipulation, outputs=direct_steering_option)

        
        with gr.Row():
            api_key_input = gr.Textbox(label="API Key", placeholder="Enter your API key here", show_label=True, type="password")
            user_input = gr.Textbox(label="Prompt", placeholder="Enter your message here")
            model_selector1 = gr.Dropdown(label="Model 1", choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mixtral-8x22B-Instruct-v0.1"])
            model_selector2 = gr.Dropdown(label="Model 2", choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mixtral-8x22B-Instruct-v0.1"])
            submit_btn = gr.Button("Submit")

        
        with gr.Row():
            output1 = gr.Textbox(label="Model 1 Response")
            output2 = gr.Textbox(label="Model 2 Response")
        
        submit_btn.click(fn=predict, inputs=[api_key_input, user_input, model_selector1, model_selector2], outputs=[output1, output2])

    demo.launch()

if __name__ == "__main__":
    main()