Spaces:
Runtime error
Runtime error
Upload encoders/timm_resnest.py
Browse files- encoders/timm_resnest.py +208 -0
encoders/timm_resnest.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._base import EncoderMixin
|
2 |
+
from timm.models.resnet import ResNet
|
3 |
+
from timm.models.resnest import ResNestBottleneck
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class ResNestEncoder(ResNet, EncoderMixin):
|
8 |
+
def __init__(self, out_channels, depth=5, **kwargs):
|
9 |
+
super().__init__(**kwargs)
|
10 |
+
self._depth = depth
|
11 |
+
self._out_channels = out_channels
|
12 |
+
self._in_channels = 3
|
13 |
+
|
14 |
+
del self.fc
|
15 |
+
del self.global_pool
|
16 |
+
|
17 |
+
def get_stages(self):
|
18 |
+
return [
|
19 |
+
nn.Identity(),
|
20 |
+
nn.Sequential(self.conv1, self.bn1, self.act1),
|
21 |
+
nn.Sequential(self.maxpool, self.layer1),
|
22 |
+
self.layer2,
|
23 |
+
self.layer3,
|
24 |
+
self.layer4,
|
25 |
+
]
|
26 |
+
|
27 |
+
def make_dilated(self, stage_list, dilation_list):
|
28 |
+
raise ValueError("ResNest encoders do not support dilated mode")
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
stages = self.get_stages()
|
32 |
+
|
33 |
+
features = []
|
34 |
+
for i in range(self._depth + 1):
|
35 |
+
x = stages[i](x)
|
36 |
+
features.append(x)
|
37 |
+
|
38 |
+
return features
|
39 |
+
|
40 |
+
def load_state_dict(self, state_dict, **kwargs):
|
41 |
+
state_dict.pop("fc.bias", None)
|
42 |
+
state_dict.pop("fc.weight", None)
|
43 |
+
super().load_state_dict(state_dict, **kwargs)
|
44 |
+
|
45 |
+
|
46 |
+
resnest_weights = {
|
47 |
+
'timm-resnest14d': {
|
48 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth'
|
49 |
+
},
|
50 |
+
'timm-resnest26d': {
|
51 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth'
|
52 |
+
},
|
53 |
+
'timm-resnest50d': {
|
54 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth',
|
55 |
+
},
|
56 |
+
'timm-resnest101e': {
|
57 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth',
|
58 |
+
},
|
59 |
+
'timm-resnest200e': {
|
60 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth',
|
61 |
+
},
|
62 |
+
'timm-resnest269e': {
|
63 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth',
|
64 |
+
},
|
65 |
+
'timm-resnest50d_4s2x40d': {
|
66 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth',
|
67 |
+
},
|
68 |
+
'timm-resnest50d_1s4x24d': {
|
69 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth',
|
70 |
+
}
|
71 |
+
}
|
72 |
+
|
73 |
+
pretrained_settings = {}
|
74 |
+
for model_name, sources in resnest_weights.items():
|
75 |
+
pretrained_settings[model_name] = {}
|
76 |
+
for source_name, source_url in sources.items():
|
77 |
+
pretrained_settings[model_name][source_name] = {
|
78 |
+
"url": source_url,
|
79 |
+
'input_size': [3, 224, 224],
|
80 |
+
'input_range': [0, 1],
|
81 |
+
'mean': [0.485, 0.456, 0.406],
|
82 |
+
'std': [0.229, 0.224, 0.225],
|
83 |
+
'num_classes': 1000
|
84 |
+
}
|
85 |
+
|
86 |
+
|
87 |
+
timm_resnest_encoders = {
|
88 |
+
'timm-resnest14d': {
|
89 |
+
'encoder': ResNestEncoder,
|
90 |
+
"pretrained_settings": pretrained_settings["timm-resnest14d"],
|
91 |
+
'params': {
|
92 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
93 |
+
'block': ResNestBottleneck,
|
94 |
+
'layers': [1, 1, 1, 1],
|
95 |
+
'stem_type': 'deep',
|
96 |
+
'stem_width': 32,
|
97 |
+
'avg_down': True,
|
98 |
+
'base_width': 64,
|
99 |
+
'cardinality': 1,
|
100 |
+
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
|
101 |
+
}
|
102 |
+
},
|
103 |
+
'timm-resnest26d': {
|
104 |
+
'encoder': ResNestEncoder,
|
105 |
+
"pretrained_settings": pretrained_settings["timm-resnest26d"],
|
106 |
+
'params': {
|
107 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
108 |
+
'block': ResNestBottleneck,
|
109 |
+
'layers': [2, 2, 2, 2],
|
110 |
+
'stem_type': 'deep',
|
111 |
+
'stem_width': 32,
|
112 |
+
'avg_down': True,
|
113 |
+
'base_width': 64,
|
114 |
+
'cardinality': 1,
|
115 |
+
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
|
116 |
+
}
|
117 |
+
},
|
118 |
+
'timm-resnest50d': {
|
119 |
+
'encoder': ResNestEncoder,
|
120 |
+
"pretrained_settings": pretrained_settings["timm-resnest50d"],
|
121 |
+
'params': {
|
122 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
123 |
+
'block': ResNestBottleneck,
|
124 |
+
'layers': [3, 4, 6, 3],
|
125 |
+
'stem_type': 'deep',
|
126 |
+
'stem_width': 32,
|
127 |
+
'avg_down': True,
|
128 |
+
'base_width': 64,
|
129 |
+
'cardinality': 1,
|
130 |
+
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
|
131 |
+
}
|
132 |
+
},
|
133 |
+
'timm-resnest101e': {
|
134 |
+
'encoder': ResNestEncoder,
|
135 |
+
"pretrained_settings": pretrained_settings["timm-resnest101e"],
|
136 |
+
'params': {
|
137 |
+
'out_channels': (3, 128, 256, 512, 1024, 2048),
|
138 |
+
'block': ResNestBottleneck,
|
139 |
+
'layers': [3, 4, 23, 3],
|
140 |
+
'stem_type': 'deep',
|
141 |
+
'stem_width': 64,
|
142 |
+
'avg_down': True,
|
143 |
+
'base_width': 64,
|
144 |
+
'cardinality': 1,
|
145 |
+
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
|
146 |
+
}
|
147 |
+
},
|
148 |
+
'timm-resnest200e': {
|
149 |
+
'encoder': ResNestEncoder,
|
150 |
+
"pretrained_settings": pretrained_settings["timm-resnest200e"],
|
151 |
+
'params': {
|
152 |
+
'out_channels': (3, 128, 256, 512, 1024, 2048),
|
153 |
+
'block': ResNestBottleneck,
|
154 |
+
'layers': [3, 24, 36, 3],
|
155 |
+
'stem_type': 'deep',
|
156 |
+
'stem_width': 64,
|
157 |
+
'avg_down': True,
|
158 |
+
'base_width': 64,
|
159 |
+
'cardinality': 1,
|
160 |
+
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
|
161 |
+
}
|
162 |
+
},
|
163 |
+
'timm-resnest269e': {
|
164 |
+
'encoder': ResNestEncoder,
|
165 |
+
"pretrained_settings": pretrained_settings["timm-resnest269e"],
|
166 |
+
'params': {
|
167 |
+
'out_channels': (3, 128, 256, 512, 1024, 2048),
|
168 |
+
'block': ResNestBottleneck,
|
169 |
+
'layers': [3, 30, 48, 8],
|
170 |
+
'stem_type': 'deep',
|
171 |
+
'stem_width': 64,
|
172 |
+
'avg_down': True,
|
173 |
+
'base_width': 64,
|
174 |
+
'cardinality': 1,
|
175 |
+
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
|
176 |
+
},
|
177 |
+
},
|
178 |
+
'timm-resnest50d_4s2x40d': {
|
179 |
+
'encoder': ResNestEncoder,
|
180 |
+
"pretrained_settings": pretrained_settings["timm-resnest50d_4s2x40d"],
|
181 |
+
'params': {
|
182 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
183 |
+
'block': ResNestBottleneck,
|
184 |
+
'layers': [3, 4, 6, 3],
|
185 |
+
'stem_type': 'deep',
|
186 |
+
'stem_width': 32,
|
187 |
+
'avg_down': True,
|
188 |
+
'base_width': 40,
|
189 |
+
'cardinality': 2,
|
190 |
+
'block_args': {'radix': 4, 'avd': True, 'avd_first': True}
|
191 |
+
}
|
192 |
+
},
|
193 |
+
'timm-resnest50d_1s4x24d': {
|
194 |
+
'encoder': ResNestEncoder,
|
195 |
+
"pretrained_settings": pretrained_settings["timm-resnest50d_1s4x24d"],
|
196 |
+
'params': {
|
197 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
198 |
+
'block': ResNestBottleneck,
|
199 |
+
'layers': [3, 4, 6, 3],
|
200 |
+
'stem_type': 'deep',
|
201 |
+
'stem_width': 32,
|
202 |
+
'avg_down': True,
|
203 |
+
'base_width': 24,
|
204 |
+
'cardinality': 4,
|
205 |
+
'block_args': {'radix': 1, 'avd': True, 'avd_first': True}
|
206 |
+
}
|
207 |
+
}
|
208 |
+
}
|