Spaces:
Runtime error
Runtime error
Upload encoders/timm_res2net.py
Browse files- encoders/timm_res2net.py +163 -0
encoders/timm_res2net.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._base import EncoderMixin
|
2 |
+
from timm.models.resnet import ResNet
|
3 |
+
from timm.models.res2net import Bottle2neck
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class Res2NetEncoder(ResNet, EncoderMixin):
|
8 |
+
def __init__(self, out_channels, depth=5, **kwargs):
|
9 |
+
super().__init__(**kwargs)
|
10 |
+
self._depth = depth
|
11 |
+
self._out_channels = out_channels
|
12 |
+
self._in_channels = 3
|
13 |
+
|
14 |
+
del self.fc
|
15 |
+
del self.global_pool
|
16 |
+
|
17 |
+
def get_stages(self):
|
18 |
+
return [
|
19 |
+
nn.Identity(),
|
20 |
+
nn.Sequential(self.conv1, self.bn1, self.act1),
|
21 |
+
nn.Sequential(self.maxpool, self.layer1),
|
22 |
+
self.layer2,
|
23 |
+
self.layer3,
|
24 |
+
self.layer4,
|
25 |
+
]
|
26 |
+
|
27 |
+
def make_dilated(self, stage_list, dilation_list):
|
28 |
+
raise ValueError("Res2Net encoders do not support dilated mode")
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
stages = self.get_stages()
|
32 |
+
|
33 |
+
features = []
|
34 |
+
for i in range(self._depth + 1):
|
35 |
+
x = stages[i](x)
|
36 |
+
features.append(x)
|
37 |
+
|
38 |
+
return features
|
39 |
+
|
40 |
+
def load_state_dict(self, state_dict, **kwargs):
|
41 |
+
state_dict.pop("fc.bias", None)
|
42 |
+
state_dict.pop("fc.weight", None)
|
43 |
+
super().load_state_dict(state_dict, **kwargs)
|
44 |
+
|
45 |
+
|
46 |
+
res2net_weights = {
|
47 |
+
'timm-res2net50_26w_4s': {
|
48 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_4s-06e79181.pth'
|
49 |
+
},
|
50 |
+
'timm-res2net50_48w_2s': {
|
51 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_48w_2s-afed724a.pth'
|
52 |
+
},
|
53 |
+
'timm-res2net50_14w_8s': {
|
54 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_14w_8s-6527dddc.pth',
|
55 |
+
},
|
56 |
+
'timm-res2net50_26w_6s': {
|
57 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_6s-19041792.pth',
|
58 |
+
},
|
59 |
+
'timm-res2net50_26w_8s': {
|
60 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_8s-2c7c9f12.pth',
|
61 |
+
},
|
62 |
+
'timm-res2net101_26w_4s': {
|
63 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net101_26w_4s-02a759a1.pth',
|
64 |
+
},
|
65 |
+
'timm-res2next50': {
|
66 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next50_4s-6ef7e7bf.pth',
|
67 |
+
}
|
68 |
+
}
|
69 |
+
|
70 |
+
pretrained_settings = {}
|
71 |
+
for model_name, sources in res2net_weights.items():
|
72 |
+
pretrained_settings[model_name] = {}
|
73 |
+
for source_name, source_url in sources.items():
|
74 |
+
pretrained_settings[model_name][source_name] = {
|
75 |
+
"url": source_url,
|
76 |
+
'input_size': [3, 224, 224],
|
77 |
+
'input_range': [0, 1],
|
78 |
+
'mean': [0.485, 0.456, 0.406],
|
79 |
+
'std': [0.229, 0.224, 0.225],
|
80 |
+
'num_classes': 1000
|
81 |
+
}
|
82 |
+
|
83 |
+
|
84 |
+
timm_res2net_encoders = {
|
85 |
+
'timm-res2net50_26w_4s': {
|
86 |
+
'encoder': Res2NetEncoder,
|
87 |
+
"pretrained_settings": pretrained_settings["timm-res2net50_26w_4s"],
|
88 |
+
'params': {
|
89 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
90 |
+
'block': Bottle2neck,
|
91 |
+
'layers': [3, 4, 6, 3],
|
92 |
+
'base_width': 26,
|
93 |
+
'block_args': {'scale': 4}
|
94 |
+
},
|
95 |
+
},
|
96 |
+
'timm-res2net101_26w_4s': {
|
97 |
+
'encoder': Res2NetEncoder,
|
98 |
+
"pretrained_settings": pretrained_settings["timm-res2net101_26w_4s"],
|
99 |
+
'params': {
|
100 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
101 |
+
'block': Bottle2neck,
|
102 |
+
'layers': [3, 4, 23, 3],
|
103 |
+
'base_width': 26,
|
104 |
+
'block_args': {'scale': 4}
|
105 |
+
},
|
106 |
+
},
|
107 |
+
'timm-res2net50_26w_6s': {
|
108 |
+
'encoder': Res2NetEncoder,
|
109 |
+
"pretrained_settings": pretrained_settings["timm-res2net50_26w_6s"],
|
110 |
+
'params': {
|
111 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
112 |
+
'block': Bottle2neck,
|
113 |
+
'layers': [3, 4, 6, 3],
|
114 |
+
'base_width': 26,
|
115 |
+
'block_args': {'scale': 6}
|
116 |
+
},
|
117 |
+
},
|
118 |
+
'timm-res2net50_26w_8s': {
|
119 |
+
'encoder': Res2NetEncoder,
|
120 |
+
"pretrained_settings": pretrained_settings["timm-res2net50_26w_8s"],
|
121 |
+
'params': {
|
122 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
123 |
+
'block': Bottle2neck,
|
124 |
+
'layers': [3, 4, 6, 3],
|
125 |
+
'base_width': 26,
|
126 |
+
'block_args': {'scale': 8}
|
127 |
+
},
|
128 |
+
},
|
129 |
+
'timm-res2net50_48w_2s': {
|
130 |
+
'encoder': Res2NetEncoder,
|
131 |
+
"pretrained_settings": pretrained_settings["timm-res2net50_48w_2s"],
|
132 |
+
'params': {
|
133 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
134 |
+
'block': Bottle2neck,
|
135 |
+
'layers': [3, 4, 6, 3],
|
136 |
+
'base_width': 48,
|
137 |
+
'block_args': {'scale': 2}
|
138 |
+
},
|
139 |
+
},
|
140 |
+
'timm-res2net50_14w_8s': {
|
141 |
+
'encoder': Res2NetEncoder,
|
142 |
+
"pretrained_settings": pretrained_settings["timm-res2net50_14w_8s"],
|
143 |
+
'params': {
|
144 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
145 |
+
'block': Bottle2neck,
|
146 |
+
'layers': [3, 4, 6, 3],
|
147 |
+
'base_width': 14,
|
148 |
+
'block_args': {'scale': 8}
|
149 |
+
},
|
150 |
+
},
|
151 |
+
'timm-res2next50': {
|
152 |
+
'encoder': Res2NetEncoder,
|
153 |
+
"pretrained_settings": pretrained_settings["timm-res2next50"],
|
154 |
+
'params': {
|
155 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
156 |
+
'block': Bottle2neck,
|
157 |
+
'layers': [3, 4, 6, 3],
|
158 |
+
'base_width': 4,
|
159 |
+
'cardinality': 8,
|
160 |
+
'block_args': {'scale': 4}
|
161 |
+
},
|
162 |
+
}
|
163 |
+
}
|