HybridNet_Demo2 / val.py
josedolot's picture
Upload val.py
ffe5ce9
import torch
import numpy as np
import argparse
from tqdm.autonotebook import tqdm
import os
from utils import smp_metrics
from utils.utils import ConfusionMatrix, postprocess, scale_coords, process_batch, ap_per_class, fitness, \
save_checkpoint, DataLoaderX, BBoxTransform, ClipBoxes, boolean_string, Params
from backbone import HybridNetsBackbone
from hybridnets.dataset import BddDataset
from torchvision import transforms
@torch.no_grad()
def val(model, optimizer, val_generator, params, opt, writer, epoch, step, best_fitness, best_loss, best_epoch):
model.eval()
loss_regression_ls = []
loss_classification_ls = []
loss_segmentation_ls = []
jdict, stats, ap, ap_class = [], [], [], []
iou_thresholds = torch.linspace(0.5, 0.95, 10).cuda() # iou vector for [email protected]:0.95
num_thresholds = iou_thresholds.numel()
names = {i: v for i, v in enumerate(params.obj_list)}
nc = len(names)
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
s = ('%15s' + '%11s' * 14) % (
'Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95', 'mIoU', 'mF1', 'fIoU', 'sIoU', 'rIoU', 'rF1', 'lIoU', 'lF1')
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
iou_ls = [[] for _ in range(3)]
f1_ls = [[] for _ in range(3)]
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
val_loader = tqdm(val_generator)
for iter, data in enumerate(val_loader):
imgs = data['img']
annot = data['annot']
seg_annot = data['segmentation']
filenames = data['filenames']
shapes = data['shapes']
if opt.num_gpus == 1:
imgs = imgs.cuda()
annot = annot.cuda()
seg_annot = seg_annot.cuda()
cls_loss, reg_loss, seg_loss, regression, classification, anchors, segmentation = model(imgs, annot,
seg_annot,
obj_list=params.obj_list)
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
seg_loss = seg_loss.mean()
if opt.cal_map:
out = postprocess(imgs.detach(),
torch.stack([anchors[0]] * imgs.shape[0], 0).detach(), regression.detach(),
classification.detach(),
regressBoxes, clipBoxes,
0.001, 0.6) # 0.5, 0.3
for i in range(annot.size(0)):
seen += 1
labels = annot[i]
labels = labels[labels[:, 4] != -1]
ou = out[i]
nl = len(labels)
pred = np.column_stack([ou['rois'], ou['scores']])
pred = np.column_stack([pred, ou['class_ids']])
pred = torch.from_numpy(pred).cuda()
target_class = labels[:, 4].tolist() if nl else [] # target class
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, num_thresholds, dtype=torch.bool),
torch.Tensor(), torch.Tensor(), target_class))
# print("here")
continue
if nl:
pred[:, :4] = scale_coords(imgs[i][1:], pred[:, :4], shapes[i][0], shapes[i][1])
labels = scale_coords(imgs[i][1:], labels, shapes[i][0], shapes[i][1])
correct = process_batch(pred, labels, iou_thresholds)
if opt.plots:
confusion_matrix.process_batch(pred, labels)
else:
correct = torch.zeros(pred.shape[0], num_thresholds, dtype=torch.bool)
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), target_class))
# print(stats)
# Visualization
# seg_0 = segmentation[i]
# # print('bbb', seg_0.shape)
# seg_0 = torch.argmax(seg_0, dim = 0)
# # print('before', seg_0.shape)
# seg_0 = seg_0.cpu().numpy()
# #.transpose(1, 2, 0)
# # print(seg_0.shape)
# anh = np.zeros((384,640,3))
# anh[seg_0 == 0] = (255,0,0)
# anh[seg_0 == 1] = (0,255,0)
# anh[seg_0 == 2] = (0,0,255)
# anh = np.uint8(anh)
# cv2.imwrite('segmentation-{}.jpg'.format(filenames[i]),anh)
# Convert segmentation tensor --> 3 binary 0 1
# batch_size, num_classes, height, width
_, segmentation = torch.max(segmentation, 1)
# _, seg_annot = torch.max(seg_annot, 1)
seg = torch.zeros((seg_annot.size(0), 3, 384, 640), dtype=torch.int32)
seg[:, 0, ...][segmentation == 0] = 1
seg[:, 1, ...][segmentation == 1] = 1
seg[:, 2, ...][segmentation == 2] = 1
tp_seg, fp_seg, fn_seg, tn_seg = smp_metrics.get_stats(seg.cuda(), seg_annot.long().cuda(),
mode='multilabel', threshold=None)
iou = smp_metrics.iou_score(tp_seg, fp_seg, fn_seg, tn_seg, reduction='none')
# print(iou)
f1 = smp_metrics.balanced_accuracy(tp_seg, fp_seg, fn_seg, tn_seg, reduction='none')
for i in range(len(params.seg_list) + 1):
iou_ls[i].append(iou.T[i].detach().cpu().numpy())
f1_ls[i].append(f1.T[i].detach().cpu().numpy())
loss = cls_loss + reg_loss + seg_loss
if loss == 0 or not torch.isfinite(loss):
continue
loss_classification_ls.append(cls_loss.item())
loss_regression_ls.append(reg_loss.item())
loss_segmentation_ls.append(seg_loss.item())
cls_loss = np.mean(loss_classification_ls)
reg_loss = np.mean(loss_regression_ls)
seg_loss = np.mean(loss_segmentation_ls)
loss = cls_loss + reg_loss + seg_loss
print(
'Val. Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Segmentation loss: {:1.5f}. Total loss: {:1.5f}'.format(
epoch, opt.num_epochs, cls_loss, reg_loss, seg_loss, loss))
writer.add_scalars('Loss', {'val': loss}, step)
writer.add_scalars('Regression_loss', {'val': reg_loss}, step)
writer.add_scalars('Classfication_loss', {'val': cls_loss}, step)
writer.add_scalars('Segmentation_loss', {'val': seg_loss}, step)
if opt.cal_map:
# print(len(iou_ls[0]))
iou_score = np.mean(iou_ls)
# print(iou_score)
f1_score = np.mean(f1_ls)
iou_first_decoder = iou_ls[0] + iou_ls[1]
iou_first_decoder = np.mean(iou_first_decoder)
iou_second_decoder = iou_ls[0] + iou_ls[2]
iou_second_decoder = np.mean(iou_second_decoder)
for i in range(len(params.seg_list) + 1):
iou_ls[i] = np.mean(iou_ls[i])
f1_ls[i] = np.mean(f1_ls[i])
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)]
# print(stats[3])
# Count detected boxes per class
# boxes_per_class = np.bincount(stats[2].astype(np.int64), minlength=1)
ap50 = None
save_dir = 'plots'
os.makedirs(save_dir, exist_ok=True)
# Compute metrics
if len(stats) and stats[0].any():
p, r, f1, ap, ap_class = ap_per_class(*stats, plot=opt.plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=1) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
print(s)
pf = '%15s' + '%11i' * 2 + '%11.3g' * 12 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map, iou_score, f1_score, iou_first_decoder, iou_second_decoder,
iou_ls[1], f1_ls[1], iou_ls[2], f1_ls[2]))
# Print results per class
training = True
if (opt.verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Plots
if opt.plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
confusion_matrix.tp_fp()
results = (mp, mr, map50, map, iou_score, f1_score, loss)
fi = fitness(
np.array(results).reshape(1, -1)) # weighted combination of [P, R, [email protected], [email protected], iou, f1, loss ]
# if calculating map, save by best fitness
if fi > best_fitness:
best_fitness = fi
ckpt = {'epoch': epoch,
'step': step,
'best_fitness': best_fitness,
'model': model,
'optimizer': optimizer.state_dict()}
print("Saving checkpoint with best fitness", fi[0])
save_checkpoint(ckpt, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}_best.pth')
else:
# if not calculating map, save by best loss
if loss + opt.es_min_delta < best_loss:
best_loss = loss
best_epoch = epoch
save_checkpoint(model, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}_best.pth')
# Early stopping
if epoch - best_epoch > opt.es_patience > 0:
print('[Info] Stop training at epoch {}. The lowest loss achieved is {}'.format(epoch, best_loss))
writer.close()
exit(0)
model.train()
return best_fitness, best_loss, best_epoch
@torch.no_grad()
def val_from_cmd(model, val_generator, params, opt):
model.eval()
jdict, stats, ap, ap_class = [], [], [], []
iou_thresholds = torch.linspace(0.5, 0.95, 10).cuda() # iou vector for [email protected]:0.95
num_thresholds = iou_thresholds.numel()
names = {i: v for i, v in enumerate(params.obj_list)}
nc = len(names)
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
s = ('%15s' + '%11s' * 14) % (
'Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95', 'mIoU', 'mF1', 'fIoU', 'sIoU', 'rIoU', 'rF1', 'lIoU', 'lF1')
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
iou_ls = [[] for _ in range(3)]
f1_ls = [[] for _ in range(3)]
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
val_loader = tqdm(val_generator)
for iter, data in enumerate(val_loader):
imgs = data['img']
annot = data['annot']
seg_annot = data['segmentation']
filenames = data['filenames']
shapes = data['shapes']
if opt.num_gpus == 1:
imgs = imgs.cuda()
annot = annot.cuda()
seg_annot = seg_annot.cuda()
features, regressions, classifications, anchors, segmentation = model(imgs)
out = postprocess(imgs.detach(),
torch.stack([anchors[0]] * imgs.shape[0], 0).detach(), regressions.detach(),
classifications.detach(),
regressBoxes, clipBoxes,
0.001, 0.6) # 0.5, 0.3
# imgs = imgs.permute(0, 2, 3, 1).cpu().numpy()
# imgs = ((imgs * [0.229, 0.224, 0.225] + [0.485, 0.456, 0.406]) * 255).astype(np.uint8)
# imgs = [cv2.cvtColor(img, cv2.COLOR_RGB2BGR) for img in imgs]
# display(out, imgs, ['car'], imshow=False, imwrite=True)
# for index, filename in enumerate(filenames):
# ori_img = cv2.imread('datasets/bdd100k/val/'+filename)
# if len(out[index]['rois']):
# for roi in out[index]['rois']:
# x1,y1,x2,y2 = [int(x) for x in roi]
# cv2.rectangle(ori_img, (x1,y1), (x2,y2), (255,0,0), 1)
# cv2.imwrite(filename, ori_img)
for i in range(annot.size(0)):
seen += 1
labels = annot[i]
labels = labels[labels[:, 4] != -1]
ou = out[i]
nl = len(labels)
pred = np.column_stack([ou['rois'], ou['scores']])
pred = np.column_stack([pred, ou['class_ids']])
pred = torch.from_numpy(pred).cuda()
target_class = labels[:, 4].tolist() if nl else [] # target class
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, num_thresholds, dtype=torch.bool),
torch.Tensor(), torch.Tensor(), target_class))
# print("here")
continue
if nl:
pred[:, :4] = scale_coords(imgs[i][1:], pred[:, :4], shapes[i][0], shapes[i][1])
labels = scale_coords(imgs[i][1:], labels, shapes[i][0], shapes[i][1])
# ori_img = cv2.imread('datasets/bdd100k_effdet/val/' + filenames[i],
# cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION | cv2.IMREAD_UNCHANGED)
# for label in labels:
# x1, y1, x2, y2 = [int(x) for x in label[:4]]
# ori_img = cv2.rectangle(ori_img, (x1, y1), (x2, y2), (255, 0, 0), 1)
# for pre in pred:
# x1, y1, x2, y2 = [int(x) for x in pre[:4]]
# # ori_img = cv2.putText(ori_img, str(pre[4].cpu().numpy()), (x1 - 10, y1 - 10),
# # cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1, cv2.LINE_AA)
# ori_img = cv2.rectangle(ori_img, (x1, y1), (x2, y2), (0, 255, 0), 1)
# cv2.imwrite('pre+label-{}.jpg'.format(filenames[i]), ori_img)
correct = process_batch(pred, labels, iou_thresholds)
if opt.plots:
confusion_matrix.process_batch(pred, labels)
else:
correct = torch.zeros(pred.shape[0], num_thresholds, dtype=torch.bool)
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), target_class))
# print(stats)
# Visualization
# seg_0 = segmentation[i]
# # print('bbb', seg_0.shape)
# seg_0 = torch.argmax(seg_0, dim = 0)
# # print('before', seg_0.shape)
# seg_0 = seg_0.cpu().numpy()
# #.transpose(1, 2, 0)
# # print(seg_0.shape)
# anh = np.zeros((384,640,3))
# anh[seg_0 == 0] = (255,0,0)
# anh[seg_0 == 1] = (0,255,0)
# anh[seg_0 == 2] = (0,0,255)
# anh = np.uint8(anh)
# cv2.imwrite('segmentation-{}.jpg'.format(filenames[i]),anh)
# Convert segmentation tensor --> 3 binary 0 1
# batch_size, num_classes, height, width
_, segmentation = torch.max(segmentation, 1)
# _, seg_annot = torch.max(seg_annot, 1)
seg = torch.zeros((seg_annot.size(0), 3, 384, 640), dtype=torch.int32)
seg[:, 0, ...][segmentation == 0] = 1
seg[:, 1, ...][segmentation == 1] = 1
seg[:, 2, ...][segmentation == 2] = 1
tp_seg, fp_seg, fn_seg, tn_seg = smp_metrics.get_stats(seg.cuda(), seg_annot.long().cuda(), mode='multilabel',
threshold=None)
iou = smp_metrics.iou_score(tp_seg, fp_seg, fn_seg, tn_seg, reduction='none')
# print(iou)
f1 = smp_metrics.balanced_accuracy(tp_seg, fp_seg, fn_seg, tn_seg, reduction='none')
for i in range(len(params.seg_list) + 1):
iou_ls[i].append(iou.T[i].detach().cpu().numpy())
f1_ls[i].append(f1.T[i].detach().cpu().numpy())
# Visualize
# for i in range(segmentation.size(0)):
# if iou_ls[1][iter][i] < 0.4:
# import cv2
#
# ori = cv2.imread('datasets/bdd100k/val/{}'.format(filenames[i]))
# cv2.imwrite('ori-segmentation-{}-{}.jpg'.format(iter,filenames[i]),ori)
#
# gt = seg_annot[i].detach()
# gt = torch.argmax(gt, dim = 0).cpu().numpy()
#
# anh = np.zeros((384,640,3))
# anh[gt == 0] = (255,0,0)
# anh[gt == 1] = (0,255,0)
# anh[gt == 2] = (0,0,255)
# cv2.imwrite('gt-segmentation-{}-{}.jpg'.format(iter,filenames[i]),anh)
#
# seg_0 = seg[i]
# seg_0 = torch.argmax(seg_0, dim = 0)
# seg_0 = seg_0.cpu().numpy()
# anh = np.zeros((384,640,3))
# anh[seg_0 == 0] = (255,0,0)
# anh[seg_0 == 1] = (0,255,0)
# anh[seg_0 == 2] = (0,0,255)
# anh = np.uint8(anh)
# cv2.imwrite('segmentation-{}-{}.jpg'.format(iter,filenames[i]),anh)
# print(len(iou_ls[0]))
# print(iou_ls)
iou_score = np.mean(iou_ls)
# print(iou_score)
f1_score = np.mean(f1_ls)
iou_first_decoder = iou_ls[0] + iou_ls[1]
iou_first_decoder = np.mean(iou_first_decoder)
iou_second_decoder = iou_ls[0] + iou_ls[2]
iou_second_decoder = np.mean(iou_second_decoder)
for i in range(len(params.seg_list) + 1):
iou_ls[i] = np.mean(iou_ls[i])
f1_ls[i] = np.mean(f1_ls[i])
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)]
# Count detected boxes per class
# boxes_per_class = np.bincount(stats[2].astype(np.int64), minlength=1)
ap50 = None
save_dir = 'plots'
os.makedirs(save_dir, exist_ok=True)
# Compute metrics
if len(stats) and stats[0].any():
p, r, f1, ap, ap_class = ap_per_class(*stats, plot=opt.plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=1) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
print(s)
pf = '%15s' + '%11i' * 2 + '%11.3g' * 12 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map, iou_score, f1_score, iou_first_decoder, iou_second_decoder,
iou_ls[1], f1_ls[1], iou_ls[2], f1_ls[2]))
# Print results per class
training = False
if (opt.verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Plots
if opt.plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
confusion_matrix.tp_fp()
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument('-p', '--project', type=str, default='coco', help='Project file that contains parameters')
ap.add_argument('-c', '--compound_coef', type=int, default=0, help='Coefficients of efficientnet backbone')
ap.add_argument('-w', '--weights', type=str, default=None, help='/path/to/weights')
ap.add_argument('-n', '--num_workers', type=int, default=12, help='Num_workers of dataloader')
ap.add_argument('--batch_size', type=int, default=12, help='The number of images per batch among all devices')
ap.add_argument('-v', '--verbose', type=boolean_string, default=True,
help='Whether to print results per class when valing')
ap.add_argument('--plots', type=boolean_string, default=True,
help='Whether to plot confusion matrix when valing')
ap.add_argument('--num_gpus', type=int, default=1,
help='Number of GPUs to be used (0 to use CPU)')
args = ap.parse_args()
compound_coef = args.compound_coef
project_name = args.project
weights_path = f'weights/hybridnets-d{compound_coef}.pth' if args.weights is None else args.weights
params = Params(f'projects/{project_name}.yml')
obj_list = params.obj_list
valid_dataset = BddDataset(
params=params,
is_train=False,
inputsize=params.model['image_size'],
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
])
)
val_generator = DataLoaderX(
valid_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=params.pin_memory,
collate_fn=BddDataset.collate_fn
)
model = HybridNetsBackbone(compound_coef=compound_coef, num_classes=len(params.obj_list),
ratios=eval(params.anchors_ratios), scales=eval(params.anchors_scales),
seg_classes=len(params.seg_list))
# print(model)
try:
model.load_state_dict(torch.load(weights_path))
except:
model.load_state_dict(torch.load(weights_path)['model'])
model.requires_grad_(False)
if args.num_gpus > 0:
model.cuda()
val_from_cmd(model, val_generator, params, args)