Spaces:
Runtime error
Runtime error
import time | |
import torch | |
from torch.backends import cudnn | |
from backbone import HybridNetsBackbone | |
import cv2 | |
import numpy as np | |
from glob import glob | |
from utils.utils import letterbox, scale_coords, postprocess, BBoxTransform, ClipBoxes, restricted_float, boolean_string | |
from utils.plot import STANDARD_COLORS, standard_to_bgr, get_index_label, plot_one_box | |
import os | |
from torchvision import transforms | |
import argparse | |
parser = argparse.ArgumentParser('HybridNets: End-to-End Perception Network - DatVu') | |
parser.add_argument('-c', '--compound_coef', type=int, default=3, help='Coefficient of efficientnet backbone') | |
parser.add_argument('--source', type=str, default='demo/image', help='The demo image folder') | |
parser.add_argument('--output', type=str, default='demo_result', help='Output folder') | |
parser.add_argument('-w', '--load_weights', type=str, default='weights/hybridnets.pth') | |
parser.add_argument('--nms_thresh', type=restricted_float, default='0.25') | |
parser.add_argument('--iou_thresh', type=restricted_float, default='0.3') | |
parser.add_argument('--imshow', type=boolean_string, default=False, help="Show result onscreen (unusable on colab, jupyter...)") | |
parser.add_argument('--imwrite', type=boolean_string, default=True, help="Write result to output folder") | |
parser.add_argument('--show_det', type=boolean_string, default=False, help="Output detection result exclusively") | |
parser.add_argument('--show_seg', type=boolean_string, default=False, help="Output segmentation result exclusively") | |
parser.add_argument('--cuda', type=boolean_string, default=True) | |
parser.add_argument('--float16', type=boolean_string, default=True, help="Use float16 for faster inference") | |
args = parser.parse_args() | |
compound_coef = args.compound_coef | |
source = args.source | |
if source.endswith("/"): | |
source = source[:-1] | |
output = args.output | |
if output.endswith("/"): | |
output = output[:-1] | |
weight = args.load_weights | |
img_path = glob(f'{source}/*.jpg') + glob(f'{source}/*.png') | |
# img_path = [img_path[0]] # demo with 1 image | |
input_imgs = [] | |
shapes = [] | |
det_only_imgs = [] | |
# replace this part with your project's anchor config | |
anchor_ratios = [(0.62, 1.58), (1.0, 1.0), (1.58, 0.62)] | |
anchor_scales = [2 ** 0, 2 ** 0.70, 2 ** 1.32] | |
threshold = args.nms_thresh | |
iou_threshold = args.iou_thresh | |
imshow = args.imshow | |
imwrite = args.imwrite | |
show_det = args.show_det | |
show_seg = args.show_seg | |
os.makedirs(output, exist_ok=True) | |
use_cuda = args.cuda | |
use_float16 = args.float16 | |
cudnn.fastest = True | |
cudnn.benchmark = True | |
obj_list = ['car'] | |
color_list = standard_to_bgr(STANDARD_COLORS) | |
ori_imgs = [cv2.imread(i, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) for i in img_path] | |
ori_imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in ori_imgs] | |
# cv2.imwrite('ori.jpg', ori_imgs[0]) | |
# cv2.imwrite('normalized.jpg', normalized_imgs[0]*255) | |
resized_shape = 640 | |
normalize = transforms.Normalize( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
) | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
normalize, | |
]) | |
for ori_img in ori_imgs: | |
h0, w0 = ori_img.shape[:2] # orig hw | |
r = resized_shape / max(h0, w0) # resize image to img_size | |
input_img = cv2.resize(ori_img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_AREA) | |
h, w = input_img.shape[:2] | |
(input_img, _, _), ratio, pad = letterbox((input_img, input_img.copy(), input_img.copy()), resized_shape, auto=True, | |
scaleup=False) | |
input_imgs.append(input_img) | |
# cv2.imwrite('input.jpg', input_img * 255) | |
shapes.append(((h0, w0), ((h / h0, w / w0), pad))) # for COCO mAP rescaling | |
if use_cuda: | |
x = torch.stack([transform(fi).cuda() for fi in input_imgs], 0) | |
else: | |
x = torch.stack([transform(fi) for fi in input_imgs], 0) | |
x = x.to(torch.float32 if not use_float16 else torch.float16) | |
# print(x.shape) | |
model = HybridNetsBackbone(compound_coef=compound_coef, num_classes=len(obj_list), | |
ratios=anchor_ratios, scales=anchor_scales, seg_classes=2) | |
try: | |
model.load_state_dict(torch.load(weight, map_location='cuda' if use_cuda else 'cpu')) | |
except: | |
model.load_state_dict(torch.load(weight, map_location='cuda' if use_cuda else 'cpu')['model']) | |
model.requires_grad_(False) | |
model.eval() | |
if use_cuda: | |
model = model.cuda() | |
if use_float16: | |
model = model.half() | |
with torch.no_grad(): | |
features, regression, classification, anchors, seg = model(x) | |
seg = seg[:, :, 12:372, :] | |
da_seg_mask = torch.nn.functional.interpolate(seg, size=[720, 1280], mode='nearest') | |
_, da_seg_mask = torch.max(da_seg_mask, 1) | |
for i in range(da_seg_mask.size(0)): | |
# print(i) | |
da_seg_mask_ = da_seg_mask[i].squeeze().cpu().numpy().round() | |
color_area = np.zeros((da_seg_mask_.shape[0], da_seg_mask_.shape[1], 3), dtype=np.uint8) | |
color_area[da_seg_mask_ == 1] = [0, 255, 0] | |
color_area[da_seg_mask_ == 2] = [0, 0, 255] | |
color_seg = color_area[..., ::-1] | |
# cv2.imwrite('seg_only_{}.jpg'.format(i), color_seg) | |
color_mask = np.mean(color_seg, 2) | |
# prepare to show det on 2 different imgs | |
# (with and without seg) -> (full and det_only) | |
det_only_imgs.append(ori_imgs[i].copy()) | |
seg_img = ori_imgs[i] | |
seg_img[color_mask != 0] = seg_img[color_mask != 0] * 0.5 + color_seg[color_mask != 0] * 0.5 | |
seg_img = seg_img.astype(np.uint8) | |
if show_seg: | |
cv2.imwrite(f'{output}/{i}_seg.jpg', cv2.cvtColor(seg_img, cv2.COLOR_RGB2BGR)) | |
regressBoxes = BBoxTransform() | |
clipBoxes = ClipBoxes() | |
out = postprocess(x, | |
anchors, regression, classification, | |
regressBoxes, clipBoxes, | |
threshold, iou_threshold) | |
for i in range(len(ori_imgs)): | |
out[i]['rois'] = scale_coords(ori_imgs[i][:2], out[i]['rois'], shapes[i][0], shapes[i][1]) | |
for j in range(len(out[i]['rois'])): | |
x1, y1, x2, y2 = out[i]['rois'][j].astype(int) | |
obj = obj_list[out[i]['class_ids'][j]] | |
score = float(out[i]['scores'][j]) | |
plot_one_box(ori_imgs[i], [x1, y1, x2, y2], label=obj, score=score, | |
color=color_list[get_index_label(obj, obj_list)]) | |
if show_det: | |
plot_one_box(det_only_imgs[i], [x1, y1, x2, y2], label=obj, score=score, | |
color=color_list[get_index_label(obj, obj_list)]) | |
if show_det: | |
cv2.imwrite(f'{output}/{i}_det.jpg', cv2.cvtColor(det_only_imgs[i], cv2.COLOR_RGB2BGR)) | |
if imshow: | |
cv2.imshow('img', ori_imgs[i]) | |
cv2.waitKey(0) | |
if imwrite: | |
cv2.imwrite(f'{output}/{i}.jpg', cv2.cvtColor(ori_imgs[i], cv2.COLOR_RGB2BGR)) | |
exit() | |
print('running speed test...') | |
with torch.no_grad(): | |
print('test1: model inferring and postprocessing') | |
print('inferring 1 image for 10 times...') | |
x = x[0, ...] | |
x.unsqueeze_(0) | |
t1 = time.time() | |
for _ in range(10): | |
_, regression, classification, anchors, segmentation = model(x) | |
out = postprocess(x, | |
anchors, regression, classification, | |
regressBoxes, clipBoxes, | |
threshold, iou_threshold) | |
t2 = time.time() | |
tact_time = (t2 - t1) / 10 | |
print(f'{tact_time} seconds, {1 / tact_time} FPS, @batch_size 1') | |
# uncomment this if you want a extreme fps test | |
print('test2: model inferring only') | |
print('inferring images for batch_size 32 for 10 times...') | |
t1 = time.time() | |
x = torch.cat([x] * 32, 0) | |
for _ in range(10): | |
_, regression, classification, anchors, segmentation = model(x) | |
t2 = time.time() | |
tact_time = (t2 - t1) / 10 | |
print(f'{tact_time} seconds, {32 / tact_time} FPS, @batch_size 32') | |