import time import torch from torch.backends import cudnn from backbone import HybridNetsBackbone import cv2 import numpy as np from glob import glob from utils.utils import letterbox, scale_coords, postprocess, BBoxTransform, ClipBoxes, restricted_float, boolean_string from utils.plot import STANDARD_COLORS, standard_to_bgr, get_index_label, plot_one_box import os from torchvision import transforms import argparse parser = argparse.ArgumentParser('HybridNets: End-to-End Perception Network - DatVu') parser.add_argument('-c', '--compound_coef', type=int, default=3, help='Coefficient of efficientnet backbone') parser.add_argument('--source', type=str, default='demo/image', help='The demo image folder') parser.add_argument('--output', type=str, default='demo_result', help='Output folder') parser.add_argument('-w', '--load_weights', type=str, default='weights/hybridnets.pth') parser.add_argument('--nms_thresh', type=restricted_float, default='0.25') parser.add_argument('--iou_thresh', type=restricted_float, default='0.3') parser.add_argument('--imshow', type=boolean_string, default=False, help="Show result onscreen (unusable on colab, jupyter...)") parser.add_argument('--imwrite', type=boolean_string, default=True, help="Write result to output folder") parser.add_argument('--show_det', type=boolean_string, default=False, help="Output detection result exclusively") parser.add_argument('--show_seg', type=boolean_string, default=False, help="Output segmentation result exclusively") parser.add_argument('--cuda', type=boolean_string, default=True) parser.add_argument('--float16', type=boolean_string, default=True, help="Use float16 for faster inference") args = parser.parse_args() compound_coef = args.compound_coef source = args.source if source.endswith("/"): source = source[:-1] output = args.output if output.endswith("/"): output = output[:-1] weight = args.load_weights img_path = glob(f'{source}/*.jpg') + glob(f'{source}/*.png') # img_path = [img_path[0]] # demo with 1 image input_imgs = [] shapes = [] det_only_imgs = [] # replace this part with your project's anchor config anchor_ratios = [(0.62, 1.58), (1.0, 1.0), (1.58, 0.62)] anchor_scales = [2 ** 0, 2 ** 0.70, 2 ** 1.32] threshold = args.nms_thresh iou_threshold = args.iou_thresh imshow = args.imshow imwrite = args.imwrite show_det = args.show_det show_seg = args.show_seg os.makedirs(output, exist_ok=True) use_cuda = args.cuda use_float16 = args.float16 cudnn.fastest = True cudnn.benchmark = True obj_list = ['car'] color_list = standard_to_bgr(STANDARD_COLORS) ori_imgs = [cv2.imread(i, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) for i in img_path] ori_imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in ori_imgs] # cv2.imwrite('ori.jpg', ori_imgs[0]) # cv2.imwrite('normalized.jpg', normalized_imgs[0]*255) resized_shape = 640 normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) transform = transforms.Compose([ transforms.ToTensor(), normalize, ]) for ori_img in ori_imgs: h0, w0 = ori_img.shape[:2] # orig hw r = resized_shape / max(h0, w0) # resize image to img_size input_img = cv2.resize(ori_img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_AREA) h, w = input_img.shape[:2] (input_img, _, _), ratio, pad = letterbox((input_img, input_img.copy(), input_img.copy()), resized_shape, auto=True, scaleup=False) input_imgs.append(input_img) # cv2.imwrite('input.jpg', input_img * 255) shapes.append(((h0, w0), ((h / h0, w / w0), pad))) # for COCO mAP rescaling if use_cuda: x = torch.stack([transform(fi).cuda() for fi in input_imgs], 0) else: x = torch.stack([transform(fi) for fi in input_imgs], 0) x = x.to(torch.float32 if not use_float16 else torch.float16) # print(x.shape) model = HybridNetsBackbone(compound_coef=compound_coef, num_classes=len(obj_list), ratios=anchor_ratios, scales=anchor_scales, seg_classes=2) try: model.load_state_dict(torch.load(weight, map_location='cuda' if use_cuda else 'cpu')) except: model.load_state_dict(torch.load(weight, map_location='cuda' if use_cuda else 'cpu')['model']) model.requires_grad_(False) model.eval() if use_cuda: model = model.cuda() if use_float16: model = model.half() with torch.no_grad(): features, regression, classification, anchors, seg = model(x) seg = seg[:, :, 12:372, :] da_seg_mask = torch.nn.functional.interpolate(seg, size=[720, 1280], mode='nearest') _, da_seg_mask = torch.max(da_seg_mask, 1) for i in range(da_seg_mask.size(0)): # print(i) da_seg_mask_ = da_seg_mask[i].squeeze().cpu().numpy().round() color_area = np.zeros((da_seg_mask_.shape[0], da_seg_mask_.shape[1], 3), dtype=np.uint8) color_area[da_seg_mask_ == 1] = [0, 255, 0] color_area[da_seg_mask_ == 2] = [0, 0, 255] color_seg = color_area[..., ::-1] # cv2.imwrite('seg_only_{}.jpg'.format(i), color_seg) color_mask = np.mean(color_seg, 2) # prepare to show det on 2 different imgs # (with and without seg) -> (full and det_only) det_only_imgs.append(ori_imgs[i].copy()) seg_img = ori_imgs[i] seg_img[color_mask != 0] = seg_img[color_mask != 0] * 0.5 + color_seg[color_mask != 0] * 0.5 seg_img = seg_img.astype(np.uint8) if show_seg: cv2.imwrite(f'{output}/{i}_seg.jpg', cv2.cvtColor(seg_img, cv2.COLOR_RGB2BGR)) regressBoxes = BBoxTransform() clipBoxes = ClipBoxes() out = postprocess(x, anchors, regression, classification, regressBoxes, clipBoxes, threshold, iou_threshold) for i in range(len(ori_imgs)): out[i]['rois'] = scale_coords(ori_imgs[i][:2], out[i]['rois'], shapes[i][0], shapes[i][1]) for j in range(len(out[i]['rois'])): x1, y1, x2, y2 = out[i]['rois'][j].astype(int) obj = obj_list[out[i]['class_ids'][j]] score = float(out[i]['scores'][j]) plot_one_box(ori_imgs[i], [x1, y1, x2, y2], label=obj, score=score, color=color_list[get_index_label(obj, obj_list)]) if show_det: plot_one_box(det_only_imgs[i], [x1, y1, x2, y2], label=obj, score=score, color=color_list[get_index_label(obj, obj_list)]) if show_det: cv2.imwrite(f'{output}/{i}_det.jpg', cv2.cvtColor(det_only_imgs[i], cv2.COLOR_RGB2BGR)) if imshow: cv2.imshow('img', ori_imgs[i]) cv2.waitKey(0) if imwrite: cv2.imwrite(f'{output}/{i}.jpg', cv2.cvtColor(ori_imgs[i], cv2.COLOR_RGB2BGR)) exit() print('running speed test...') with torch.no_grad(): print('test1: model inferring and postprocessing') print('inferring 1 image for 10 times...') x = x[0, ...] x.unsqueeze_(0) t1 = time.time() for _ in range(10): _, regression, classification, anchors, segmentation = model(x) out = postprocess(x, anchors, regression, classification, regressBoxes, clipBoxes, threshold, iou_threshold) t2 = time.time() tact_time = (t2 - t1) / 10 print(f'{tact_time} seconds, {1 / tact_time} FPS, @batch_size 1') # uncomment this if you want a extreme fps test print('test2: model inferring only') print('inferring images for batch_size 32 for 10 times...') t1 = time.time() x = torch.cat([x] * 32, 0) for _ in range(10): _, regression, classification, anchors, segmentation = model(x) t2 = time.time() tact_time = (t2 - t1) / 10 print(f'{tact_time} seconds, {32 / tact_time} FPS, @batch_size 32')