Spaces:
Runtime error
Runtime error
dependencies = ["efficientnet_pytorch", "pretrainedmodels", | |
"timm", "torch", "torchvision"] | |
import torch | |
from utils.utils import Params | |
from backbone import HybridNetsBackbone | |
from pathlib import Path | |
import os | |
def hybridnets(pretrained=True, compound_coef=3, device='cpu'): | |
"""Creates a HybridNets model | |
Arguments: | |
pretrained (bool): load pretrained weights into the model | |
compound_coef (int): compound coefficient of efficientnet backbone | |
device (str): 'cuda:0' or 'cpu' | |
Returns: | |
HybridNets model | |
""" | |
params = Params(os.path.join(Path(__file__).resolve().parent, "projects/bdd100k.yml")) | |
model = HybridNetsBackbone(num_classes=len(params.obj_list), compound_coef=compound_coef, | |
ratios=eval(params.anchors_ratios), scales=eval(params.anchors_scales), | |
seg_classes=len(params.seg_list)) | |
if pretrained and compound_coef == 3: | |
weight_url = 'https://github.com/datvuthanh/HybridNets/releases/download/v1.0/hybridnets.pth' | |
model.load_state_dict(torch.hub.load_state_dict_from_url(weight_url, map_location=device)) | |
model = model.to(device) | |
return model | |
if __name__ == "__main__": | |
model = hybridnets(device='cpu') | |
img = torch.rand(1, 3, 384, 640) | |
result = model(img) | |
print(result) | |