Spaces:
Runtime error
Runtime error
Upload hubconf.py
Browse files- hubconf.py +37 -0
hubconf.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dependencies = ["efficientnet_pytorch", "pretrainedmodels",
|
2 |
+
"timm", "torch", "torchvision"]
|
3 |
+
import torch
|
4 |
+
from utils.utils import Params
|
5 |
+
from backbone import HybridNetsBackbone
|
6 |
+
from pathlib import Path
|
7 |
+
import os
|
8 |
+
|
9 |
+
|
10 |
+
def hybridnets(pretrained=True, compound_coef=3, device='cpu'):
|
11 |
+
"""Creates a HybridNets model
|
12 |
+
|
13 |
+
Arguments:
|
14 |
+
pretrained (bool): load pretrained weights into the model
|
15 |
+
compound_coef (int): compound coefficient of efficientnet backbone
|
16 |
+
device (str): 'cuda:0' or 'cpu'
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
HybridNets model
|
20 |
+
"""
|
21 |
+
params = Params(os.path.join(Path(__file__).resolve().parent, "projects/bdd100k.yml"))
|
22 |
+
model = HybridNetsBackbone(num_classes=len(params.obj_list), compound_coef=compound_coef,
|
23 |
+
ratios=eval(params.anchors_ratios), scales=eval(params.anchors_scales),
|
24 |
+
seg_classes=len(params.seg_list))
|
25 |
+
if pretrained and compound_coef == 3:
|
26 |
+
weight_url = 'https://github.com/datvuthanh/HybridNets/releases/download/v1.0/hybridnets.pth'
|
27 |
+
model.load_state_dict(torch.hub.load_state_dict_from_url(weight_url, map_location=device))
|
28 |
+
model = model.to(device)
|
29 |
+
return model
|
30 |
+
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
model = hybridnets(device='cpu')
|
34 |
+
img = torch.rand(1, 3, 384, 640)
|
35 |
+
|
36 |
+
result = model(img)
|
37 |
+
print(result)
|