Spaces:
Runtime error
Runtime error
from ._base import EncoderMixin | |
from timm.models.resnet import ResNet | |
from timm.models.sknet import SelectiveKernelBottleneck, SelectiveKernelBasic | |
import torch.nn as nn | |
class SkNetEncoder(ResNet, EncoderMixin): | |
def __init__(self, out_channels, depth=5, **kwargs): | |
super().__init__(**kwargs) | |
self._depth = depth | |
self._out_channels = out_channels | |
self._in_channels = 3 | |
del self.fc | |
del self.global_pool | |
def get_stages(self): | |
return [ | |
nn.Identity(), | |
nn.Sequential(self.conv1, self.bn1, self.act1), | |
nn.Sequential(self.maxpool, self.layer1), | |
self.layer2, | |
self.layer3, | |
self.layer4, | |
] | |
def forward(self, x): | |
stages = self.get_stages() | |
features = [] | |
for i in range(self._depth + 1): | |
x = stages[i](x) | |
features.append(x) | |
return features | |
def load_state_dict(self, state_dict, **kwargs): | |
state_dict.pop("fc.bias", None) | |
state_dict.pop("fc.weight", None) | |
super().load_state_dict(state_dict, **kwargs) | |
sknet_weights = { | |
'timm-skresnet18': { | |
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth' | |
}, | |
'timm-skresnet34': { | |
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth' | |
}, | |
'timm-skresnext50_32x4d': { | |
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth', | |
} | |
} | |
pretrained_settings = {} | |
for model_name, sources in sknet_weights.items(): | |
pretrained_settings[model_name] = {} | |
for source_name, source_url in sources.items(): | |
pretrained_settings[model_name][source_name] = { | |
"url": source_url, | |
'input_size': [3, 224, 224], | |
'input_range': [0, 1], | |
'mean': [0.485, 0.456, 0.406], | |
'std': [0.229, 0.224, 0.225], | |
'num_classes': 1000 | |
} | |
timm_sknet_encoders = { | |
'timm-skresnet18': { | |
'encoder': SkNetEncoder, | |
"pretrained_settings": pretrained_settings["timm-skresnet18"], | |
'params': { | |
'out_channels': (3, 64, 64, 128, 256, 512), | |
'block': SelectiveKernelBasic, | |
'layers': [2, 2, 2, 2], | |
'zero_init_last_bn': False, | |
'block_args': {'sk_kwargs': {'rd_ratio': 1/8, 'split_input': True}} | |
} | |
}, | |
'timm-skresnet34': { | |
'encoder': SkNetEncoder, | |
"pretrained_settings": pretrained_settings["timm-skresnet34"], | |
'params': { | |
'out_channels': (3, 64, 64, 128, 256, 512), | |
'block': SelectiveKernelBasic, | |
'layers': [3, 4, 6, 3], | |
'zero_init_last_bn': False, | |
'block_args': {'sk_kwargs': {'rd_ratio': 1/8, 'split_input': True}} | |
} | |
}, | |
'timm-skresnext50_32x4d': { | |
'encoder': SkNetEncoder, | |
"pretrained_settings": pretrained_settings["timm-skresnext50_32x4d"], | |
'params': { | |
'out_channels': (3, 64, 256, 512, 1024, 2048), | |
'block': SelectiveKernelBottleneck, | |
'layers': [3, 4, 6, 3], | |
'zero_init_last_bn': False, | |
'cardinality': 32, | |
'base_width': 4 | |
} | |
} | |
} | |