Spaces:
Runtime error
Runtime error
File size: 15,922 Bytes
794aa23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import argparse
import datetime
import os
import traceback
import numpy as np
import torch
from tensorboardX import SummaryWriter
from torch import nn
from torchvision import transforms
from tqdm.autonotebook import tqdm
from val import val
from backbone import HybridNetsBackbone
from hybridnets.loss import FocalLoss
from utils.sync_batchnorm import patch_replication_callback
from utils.utils import replace_w_sync_bn, CustomDataParallel, get_last_weights, init_weights, boolean_string, \
save_checkpoint, DataLoaderX, Params
from hybridnets.dataset import BddDataset
from hybridnets.loss import FocalLossSeg, TverskyLoss
from hybridnets.autoanchor import run_anchor
def get_args():
parser = argparse.ArgumentParser('HybridNets: End-to-End Perception Network - DatVu')
parser.add_argument('-p', '--project', type=str, default='bdd100k', help='Project file that contains parameters')
parser.add_argument('-c', '--compound_coef', type=int, default=3, help='Coefficient of efficientnet backbone')
parser.add_argument('-n', '--num_workers', type=int, default=12, help='Num_workers of dataloader')
parser.add_argument('-b', '--batch_size', type=int, default=12, help='Number of images per batch among all devices')
parser.add_argument('--freeze_backbone', type=boolean_string, default=False,
help='Freeze encoder and neck (effnet and bifpn)')
parser.add_argument('--freeze_det', type=boolean_string, default=False,
help='Freeze detection head')
parser.add_argument('--freeze_seg', type=boolean_string, default=False,
help='Freeze segmentation head')
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--optim', type=str, default='adamw', help='Select optimizer for training, '
'suggest using \'admaw\' until the'
' very final stage then switch to \'sgd\'')
parser.add_argument('--num_epochs', type=int, default=500)
parser.add_argument('--val_interval', type=int, default=1, help='Number of epoches between valing phases')
parser.add_argument('--save_interval', type=int, default=500, help='Number of steps between saving')
parser.add_argument('--es_min_delta', type=float, default=0.0,
help='Early stopping\'s parameter: minimum change loss to qualify as an improvement')
parser.add_argument('--es_patience', type=int, default=0,
help='Early stopping\'s parameter: number of epochs with no improvement after which '
'training will be stopped. Set to 0 to disable this technique')
parser.add_argument('--data_path', type=str, default='datasets/', help='The root folder of dataset')
parser.add_argument('--log_path', type=str, default='checkpoints/')
parser.add_argument('-w', '--load_weights', type=str, default=None,
help='Whether to load weights from a checkpoint, set None to initialize,'
'set \'last\' to load last checkpoint')
parser.add_argument('--saved_path', type=str, default='checkpoints/')
parser.add_argument('--debug', type=boolean_string, default=False,
help='Whether visualize the predicted boxes of training, '
'the output images will be in test/')
parser.add_argument('--cal_map', type=boolean_string, default=True,
help='Calculate mAP in validation')
parser.add_argument('-v', '--verbose', type=boolean_string, default=True,
help='Whether to print results per class when valing')
parser.add_argument('--plots', type=boolean_string, default=True,
help='Whether to plot confusion matrix when valing')
parser.add_argument('--num_gpus', type=int, default=1,
help='Number of GPUs to be used (0 to use CPU)')
args = parser.parse_args()
return args
class ModelWithLoss(nn.Module):
def __init__(self, model, debug=False):
super().__init__()
self.criterion = FocalLoss()
self.seg_criterion1 = TverskyLoss(mode='multilabel', alpha=0.7, beta=0.3, gamma=4.0 / 3, from_logits=False)
self.seg_criterion2 = FocalLossSeg(mode='multilabel', alpha=0.25)
self.model = model
self.debug = debug
def forward(self, imgs, annotations, seg_annot, obj_list=None):
_, regression, classification, anchors, segmentation = self.model(imgs)
if self.debug:
cls_loss, reg_loss = self.criterion(classification, regression, anchors, annotations,
imgs=imgs, obj_list=obj_list)
tversky_loss = self.seg_criterion1(segmentation, seg_annot)
focal_loss = self.seg_criterion2(segmentation, seg_annot)
else:
cls_loss, reg_loss = self.criterion(classification, regression, anchors, annotations)
tversky_loss = self.seg_criterion1(segmentation, seg_annot)
focal_loss = self.seg_criterion2(segmentation, seg_annot)
# Visualization
# seg_0 = seg_annot[0]
# # print('bbb', seg_0.shape)
# seg_0 = torch.argmax(seg_0, dim = 0)
# # print('before', seg_0.shape)
# seg_0 = seg_0.cpu().numpy()
# #.transpose(1, 2, 0)
# print(seg_0.shape)
#
# anh = np.zeros((384,640,3))
#
# anh[seg_0 == 0] = (255,0,0)
# anh[seg_0 == 1] = (0,255,0)
# anh[seg_0 == 2] = (0,0,255)
#
# anh = np.uint8(anh)
#
# cv2.imwrite('anh.jpg',anh)
seg_loss = tversky_loss + 1 * focal_loss
# print("TVERSKY", tversky_loss)
# print("FOCAL", focal_loss)
return cls_loss, reg_loss, seg_loss, regression, classification, anchors, segmentation
def train(opt):
params = Params(f'projects/{opt.project}.yml')
if opt.num_gpus == 0:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
else:
torch.manual_seed(42)
opt.saved_path = opt.saved_path + f'/{params.project_name}/'
opt.log_path = opt.log_path + f'/{params.project_name}/tensorboard/'
os.makedirs(opt.log_path, exist_ok=True)
os.makedirs(opt.saved_path, exist_ok=True)
train_dataset = BddDataset(
params=params,
is_train=True,
inputsize=params.model['image_size'],
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
])
)
training_generator = DataLoaderX(
train_dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.num_workers,
pin_memory=params.pin_memory,
collate_fn=BddDataset.collate_fn
)
valid_dataset = BddDataset(
params=params,
is_train=False,
inputsize=params.model['image_size'],
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
])
)
val_generator = DataLoaderX(
valid_dataset,
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.num_workers,
pin_memory=params.pin_memory,
collate_fn=BddDataset.collate_fn
)
if params.need_autoanchor:
params.anchors_scales, params.anchors_ratios = run_anchor(None, train_dataset)
model = HybridNetsBackbone(num_classes=len(params.obj_list), compound_coef=opt.compound_coef,
ratios=eval(params.anchors_ratios), scales=eval(params.anchors_scales),
seg_classes=len(params.seg_list))
# load last weights
ckpt = {}
# last_step = None
if opt.load_weights:
if opt.load_weights.endswith('.pth'):
weights_path = opt.load_weights
else:
weights_path = get_last_weights(opt.saved_path)
# try:
# last_step = int(os.path.basename(weights_path).split('_')[-1].split('.')[0])
# except:
# last_step = 0
try:
ckpt = torch.load(weights_path)
model.load_state_dict(ckpt.get('model', ckpt), strict=False)
except RuntimeError as e:
print(f'[Warning] Ignoring {e}')
print(
'[Warning] Don\'t panic if you see this, this might be because you load a pretrained weights with different number of classes. The rest of the weights should be loaded already.')
else:
print('[Info] initializing weights...')
init_weights(model)
print('[Info] Successfully!!!')
if opt.freeze_backbone:
def freeze_backbone(m):
classname = m.__class__.__name__
if classname in ['EfficientNetEncoder', 'BiFPN']: # replace backbone classname when using another backbone
print("[Info] freezing {}".format(classname))
for param in m.parameters():
param.requires_grad = False
model.apply(freeze_backbone)
print('[Info] freezed backbone')
if opt.freeze_det:
def freeze_det(m):
classname = m.__class__.__name__
if classname in ['Regressor', 'Classifier', 'Anchors']:
print("[Info] freezing {}".format(classname))
for param in m.parameters():
param.requires_grad = False
model.apply(freeze_det)
print('[Info] freezed detection head')
if opt.freeze_seg:
def freeze_seg(m):
classname = m.__class__.__name__
if classname in ['BiFPNDecoder', 'SegmentationHead']:
print("[Info] freezing {}".format(classname))
for param in m.parameters():
param.requires_grad = False
model.apply(freeze_seg)
print('[Info] freezed segmentation head')
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
# apply sync_bn when using multiple gpu and batch_size per gpu is lower than 4
# useful when gpu memory is limited.
# because when bn is disable, the training will be very unstable or slow to converge,
# apply sync_bn can solve it,
# by packing all mini-batch across all gpus as one batch and normalize, then send it back to all gpus.
# but it would also slow down the training by a little bit.
if opt.num_gpus > 1 and opt.batch_size // opt.num_gpus < 4:
model.apply(replace_w_sync_bn)
use_sync_bn = True
else:
use_sync_bn = False
writer = SummaryWriter(opt.log_path + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/')
# wrap the model with loss function, to reduce the memory usage on gpu0 and speedup
model = ModelWithLoss(model, debug=opt.debug)
if opt.num_gpus > 0:
model = model.cuda()
if opt.num_gpus > 1:
model = CustomDataParallel(model, opt.num_gpus)
if use_sync_bn:
patch_replication_callback(model)
if opt.optim == 'adamw':
optimizer = torch.optim.AdamW(model.parameters(), opt.lr)
else:
optimizer = torch.optim.SGD(model.parameters(), opt.lr, momentum=0.9, nesterov=True)
# print(ckpt)
if opt.load_weights is not None and ckpt.get('optimizer', None):
optimizer.load_state_dict(ckpt['optimizer'])
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)
epoch = 0
best_loss = 1e5
best_epoch = 0
last_step = ckpt['step'] if opt.load_weights is not None and ckpt.get('step', None) else 0
best_fitness = ckpt['best_fitness'] if opt.load_weights is not None and ckpt.get('best_fitness', None) else 0
step = max(0, last_step)
model.train()
num_iter_per_epoch = len(training_generator)
try:
for epoch in range(opt.num_epochs):
last_epoch = step // num_iter_per_epoch
if epoch < last_epoch:
continue
epoch_loss = []
progress_bar = tqdm(training_generator)
for iter, data in enumerate(progress_bar):
if iter < step - last_epoch * num_iter_per_epoch:
progress_bar.update()
continue
try:
imgs = data['img']
annot = data['annot']
seg_annot = data['segmentation']
if opt.num_gpus == 1:
# if only one gpu, just send it to cuda:0
# elif multiple gpus, send it to multiple gpus in CustomDataParallel, not here
imgs = imgs.cuda()
annot = annot.cuda()
seg_annot = seg_annot.cuda().long()
optimizer.zero_grad()
cls_loss, reg_loss, seg_loss, regression, classification, anchors, segmentation = model(imgs, annot,
seg_annot,
obj_list=params.obj_list)
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
seg_loss = seg_loss.mean()
loss = cls_loss + reg_loss + seg_loss
if loss == 0 or not torch.isfinite(loss):
continue
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
optimizer.step()
epoch_loss.append(float(loss))
progress_bar.set_description(
'Step: {}. Epoch: {}/{}. Iteration: {}/{}. Cls loss: {:.5f}. Reg loss: {:.5f}. Seg loss: {:.5f}. Total loss: {:.5f}'.format(
step, epoch, opt.num_epochs, iter + 1, num_iter_per_epoch, cls_loss.item(),
reg_loss.item(), seg_loss.item(), loss.item()))
writer.add_scalars('Loss', {'train': loss}, step)
writer.add_scalars('Regression_loss', {'train': reg_loss}, step)
writer.add_scalars('Classfication_loss', {'train': cls_loss}, step)
writer.add_scalars('Segmentation_loss', {'train': seg_loss}, step)
# log learning_rate
current_lr = optimizer.param_groups[0]['lr']
writer.add_scalar('learning_rate', current_lr, step)
step += 1
if step % opt.save_interval == 0 and step > 0:
save_checkpoint(model, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}.pth')
print('checkpoint...')
except Exception as e:
print('[Error]', traceback.format_exc())
print(e)
continue
scheduler.step(np.mean(epoch_loss))
if epoch % opt.val_interval == 0:
best_fitness, best_loss, best_epoch = val(model, optimizer, val_generator, params, opt, writer, epoch,
step, best_fitness, best_loss, best_epoch)
except KeyboardInterrupt:
save_checkpoint(model, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}.pth')
finally:
writer.close()
if __name__ == '__main__':
opt = get_args()
train(opt)
|