File size: 6,089 Bytes
0a06e4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
This testing script loads actual probabilisitic predictions from a resnet finetuned on CIFAR

There are a number of logits-groundtruth pickles available @ https://github.com/markus93/NN_calibration/tree/master/logits
[Seems to have moved from Git-LFS to sharepoint]
https://tartuulikool-my.sharepoint.com/:f:/g/personal/markus93_ut_ee/EmW0xbhcic5Ou0lRbTrySOUBF2ccSsN7lo6lvSfuG1djew?e=l0TErb

See https://github.com/markus93/NN_calibration/blob/master/logits/Readme.txt to decode the [model_dataset] filenames

As a bonus, one could consider temperature scaling and measuring after calibration.
"""
import sys
import numpy as np
import scipy.stats as stats
from scipy.special import softmax
import pickle
from sklearn.model_selection import train_test_split

from matplotlib import pyplot as plt

from ece import create_bins, discretize_into_bins, ECE


# Open file with pickled variables
def unpickle_probs(file, verbose=0, normalize=True):
    with open(file, "rb") as f:  # Python 3: open(..., 'rb')
        y1, y2 = pickle.load(f)  # unpickle the content

    if isinstance(y1, tuple):
        y_probs_val, y_val = y1
        y_probs_test, y_test = y2
    else:
        y_probs_val, y_probs_test, y_val, y_test = train_test_split(
            y1, y2.reshape(-1, 1), test_size=len(y2) - 5000, random_state=15
        )  # Splits the data in the case of pretrained models

    if normalize:
        y_probs_val = softmax(y_probs_val, -1)
        y_probs_test = softmax(y_probs_test, -1)

    if verbose:
        print(
            "y_probs_val:", y_probs_val.shape
        )  # (5000, 10); Validation set probabilities of predictions
        print("y_true_val:", y_val.shape)  # (5000, 1); Validation set true labels
        print("y_probs_test:", y_probs_test.shape)  # (10000, 10); Test set probabilities
        print("y_true_test:", y_test.shape)  # (10000, 1); Test set true labels

    return ((y_probs_val, y_val.ravel()), (y_probs_test, y_test.ravel()))


def unpickle_structured_probs(valpath=None, testpath=None):
    valpath = "/home/jordy/code/gordon/arkham/arkham/StructuredCalibration/models/jordyvl/bert-base-cased_conll2003-sm-first-ner_validation_UTY.pickle"
    testpath = "/home/jordy/code/gordon/arkham/arkham/StructuredCalibration/models/jordyvl/bert-base-cased_conll2003-sm-first-ner_test_UTY.pickle"

    with open(valpath, "rb") as f:
        X_val, _, y_val, _ = pickle.load(f)

    with open(testpath, "rb") as f:
        X_test, _, y_test, _ = pickle.load(f)

    X_val = np.log(X_val)  # originally exponentiated [different purposes]
    X_test = np.log(X_test)  # originally exponentiated [different purposes]
    # structured logits


"""
ALTERNATE equal mass binning
"""
# Define data types.
from typing import List, Tuple, NewType, TypeVar
Data = List[Tuple[float, float]]  # List of (predicted_probability, true_label).
Bins = List[float]  # List of bin boundaries, excluding 0.0, but including 1.0.
BinnedData = List[Data]  # binned_data[i] contains the data in bin i.
T = TypeVar('T')

eps = 1e-6

def split(sequence: List[T], parts: int) -> List[List[T]]:
    assert parts <= len(sequence), "more bins than probabilities"
    part_size = int(np.ceil(len(sequence) * 1.0 / parts))
    assert part_size * parts >= len(sequence), "no missing instances when partitioning"
    assert (part_size - 1) * parts < len(sequence), "dropping 1 does not make for missing"
    return [sequence[i:i + part_size] for i in range(0, len(sequence), part_size)]


def get_equal_bins(probs: List[float], n_bins: int=10) -> Bins:
    """Get bins that contain approximately an equal number of data points."""
    sorted_probs = sorted(probs)
    binned_data = split(sorted_probs, n_bins)
    bins: Bins = []
    for i in range(len(binned_data) - 1):
        last_prob = binned_data[i][-1]
        next_first_prob = binned_data[i + 1][0]
        bins.append((last_prob + next_first_prob) / 2.0)
    bins.append(1.0)
    bins = sorted(list(set(bins))) #this is the special thing!
    return bins

def histedges_equalN(x, nbin):
    npt = len(x)
    return np.interp(np.linspace(0, npt, nbin + 1),
                     np.arange(npt),
                     np.sort(x))

    '''
    bin_upper_edges = histedges_equalN(P, n_bins)
    #n, bins, patches = plt.hist(x, histedges_equalN(x, 10))
    '''


def test_equalmass_binning(P, Y):
    #probs = np.array([0.63, 0.2, 0.2, 0, 0.95, 0.05, 0.72, 0.1, 0.2])

    kwargs = dict(
        n_bins= 10,
        scheme="equal-mass",
        bin_range=None,
        proxy="upper-edge",
        #proxy="center",
        p=1,
        detail=True,
    )

    if P.ndim == 2: #can assume ECE
        p_max = np.max(P, -1)  # create p̂ as top-1 softmax probability € [0,1]

    eqr_bins = create_bins(n_bins=kwargs["n_bins"], scheme="equal-range", bin_range=kwargs["bin_range"], P=p_max)
    eqm_bins = create_bins(n_bins=kwargs["n_bins"], scheme=kwargs["scheme"], bin_range=kwargs["bin_range"], P=p_max)
    #alternate_eqm_bins = get_equal_bins(p_max, kwargs["n_bins"])


    eqr_hist = np.digitize(p_max, eqr_bins, right=True)
    eqm_hist = np.digitize(p_max, eqm_bins, right=True)    
    eqml_hist = np.digitize(p_max, eqm_bins, right=False)

    #eqm_bins = [0] + eqm_bins

    other_hist = discretize_into_bins(np.expand_dims(p_max, 0), eqm_bins)
    hist_difference = stats.power_divergence(eqr_hist, eqm_hist, lambda_="pearson") #chisquare

    #plt.hist(eqr_hist, color="green", label="equal-range")
    plt.hist(eqm_hist, color="blue", label="equal-mass")
    plt.legend()
    #plt.show()


    res = ECE()._compute(P, Y, **kwargs)
    print(f"eqm ECE: {res['ECE']}")

    kwargs["scheme"] = "equal-range"
    res = ECE()._compute(P, Y, **kwargs)
    print(f"eqr ECE: {res['ECE']}")

    # res = ECE()._compute(predictions, references, detail=True)
    # print(f"ECE: {res['ECE']}")



if __name__ == "__main__":
    FILE_PATH = sys.argv[1] if len(sys.argv) > 1 else "resnet110_c10_logits.p"
    (p_val, y_val), (p_test, y_test) = unpickle_probs(FILE_PATH, False, True)
    test_equalmass_binning(p_val, y_val)
    # do on val