Rahul Bhoyar commited on
Commit
0cec20e
·
1 Parent(s): 08728cc

Updated files

Browse files
Files changed (3) hide show
  1. .DS_Store +0 -0
  2. app.py +23 -8
  3. requirements.txt +2 -1
.DS_Store ADDED
Binary file (6.15 kB). View file
 
app.py CHANGED
@@ -61,7 +61,8 @@ from llama_index import SimpleDirectoryReader, VectorStoreIndex
61
  from llama_index import ServiceContext
62
  from llama_index.embeddings import HuggingFaceEmbedding
63
  from llama_index.llms import HuggingFaceInferenceAPI
64
- import os
 
65
 
66
  # os.environ["GOOGLE_API_KEY"]="AIzaSyBYrZpUdTc4rumhdHajlKfwY4Kq0u6vFDs"
67
 
@@ -73,19 +74,33 @@ hf_token = st.text_input("Enter your Hugging Face token:")
73
 
74
 
75
  #function to save a file
76
- def save_uploadedfile(uploadedfile):
77
- with open(os.path.join("data",uploadedfile.name),"wb") as f:
78
- f.write(uploadedfile.getbuffer())
79
- return st.success("Saved File:{} to directory".format(uploadedfile.name))
 
 
 
 
 
 
 
 
80
 
81
  # Streamlit input for user file upload
82
  uploaded_pdf = st.file_uploader("Upload your PDF", type=['pdf'])
83
 
84
  # Load data and configure the index
85
  if uploaded_pdf is not None:
86
- input_file = save_uploadedfile(uploaded_pdf)
87
- st.write("File uploaded successfully!")
88
- documents = SimpleDirectoryReader("data").load_data()
 
 
 
 
 
 
89
  llm = HuggingFaceInferenceAPI(model_name="HuggingFaceH4/zephyr-7b-alpha", token=hf_token)
90
  embed_model_uae = HuggingFaceEmbedding(model_name="WhereIsAI/UAE-Large-V1")
91
 
 
61
  from llama_index import ServiceContext
62
  from llama_index.embeddings import HuggingFaceEmbedding
63
  from llama_index.llms import HuggingFaceInferenceAPI
64
+ from llama_index.schema import Document
65
+ from PyPDF2 import PdfReader
66
 
67
  # os.environ["GOOGLE_API_KEY"]="AIzaSyBYrZpUdTc4rumhdHajlKfwY4Kq0u6vFDs"
68
 
 
74
 
75
 
76
  #function to save a file
77
+ # def save_uploadedfile(uploadedfile):
78
+ # with open(os.path.join("data",uploadedfile.name),"wb") as f:
79
+ # f.write(uploadedfile.getbuffer())
80
+ # return st.success("Saved File:{} to directory".format(uploadedfile.name))
81
+
82
+
83
+ def read_pdf(uploaded_file):
84
+ pdf_reader = PdfReader(uploaded_file)
85
+ text = ""
86
+ for page_num in range(len(pdf_reader.pages)):
87
+ text += pdf_reader.pages[page_num].extract_text()
88
+ return text
89
 
90
  # Streamlit input for user file upload
91
  uploaded_pdf = st.file_uploader("Upload your PDF", type=['pdf'])
92
 
93
  # Load data and configure the index
94
  if uploaded_pdf is not None:
95
+ # input_file = save_uploadedfile(uploaded_pdf)
96
+ # st.write("File uploaded successfully!")
97
+ # documents = SimpleDirectoryReader("data").load_data()
98
+
99
+ file_contents = read_pdf(uploaded_pdf)
100
+ documents = Document(text=file_contents)
101
+ documents = [documents]
102
+ st.success("Documents loaded successfully!")
103
+
104
  llm = HuggingFaceInferenceAPI(model_name="HuggingFaceH4/zephyr-7b-alpha", token=hf_token)
105
  embed_model_uae = HuggingFaceEmbedding(model_name="WhereIsAI/UAE-Large-V1")
106
 
requirements.txt CHANGED
@@ -4,4 +4,5 @@ streamlit
4
  huggingface_hub[inference]>=0.19.0
5
  transformers
6
  torch
7
- watchdog
 
 
4
  huggingface_hub[inference]>=0.19.0
5
  transformers
6
  torch
7
+ watchdog
8
+ PyPDF2