Spaces:
Sleeping
Sleeping
File size: 1,318 Bytes
6eb397b 853ac47 6eb397b 853ac47 6eb397b 8695168 6eb397b 38243ec 853ac47 38243ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForObjectDetection
import torch
from PIL import Image, ImageDraw
processor = AutoImageProcessor.from_pretrained("joortif/practica_2_detr")
model = AutoModelForObjectDetection.from_pretrained("joortif/practica_2_detr")
def detect_objects(img: Image.Image):
inputs = processor(images=img, return_tensors="pt")
outputs = model(**inputs)
target_sizes = torch.tensor([img.size[::-1]]) #
results = processor.post_process_object_detection(
outputs, target_sizes=target_sizes, threshold=0.3
)[0]
draw = ImageDraw.Draw(img)
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
box = [round(i, 2) for i in box.tolist()]
draw.rectangle(box, outline="red", width=3)
draw.text((box[0], box[1]), f"{model.config.id2label[label.item()]}: {score:.2f}", fill="red")
return img
example_images = [
"https://huggingface.co/joortif/practica_2/resolve/main/00111.jpg",
"https://huggingface.co/joortif/practica_2/resolve/main/00148.jpg"
]
demo = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil"),
title="Detección de Objetos - joortif/practica_2",
examples=example_images
)
demo.launch() |