WeatherBoy / app.py
jonathang's picture
Update app.py
655f886
raw
history blame
12 kB
import requests
import structlog
import openai
import os
import io
import random
import tiktoken
import enum
import time
import retrying
import IPython.display as display
from base64 import b64decode
import base64
from io import BytesIO
import PIL
import PIL.Image
import PIL.ImageDraw
import PIL.ImageFont
import gradio as gr
import cachetools.func
from huggingface_hub import hf_hub_download
import concurrent.futures
import geopy
logger = structlog.getLogger()
weather_api_key = os.environ['WEATHER_API']
openai.api_key = os.environ.get("OPENAI_KEY", None)
animals = [x.strip() for x in open('animals.txt').readlines()]
art_styles = [x.strip() for x in open('art_styles.txt').readlines()]
font_path = hf_hub_download("ybelkada/fonts", "Arial.TTF")
@cachetools.cached(cache={})
def get_lat_long(zip):
loc = geopy.Nominatim(user_agent='weatherboy-gpt').geocode(str(zip))
return loc.latitude, loc.longitude
class Chat:
class Model(enum.Enum):
GPT3_5 = "gpt-3.5-turbo"
GPT_4 = "gpt-4"
def __init__(self, system, max_length=4096//2):
self._system = system
self._max_length = max_length
self._history = [
{"role": "system", "content": self._system},
]
@classmethod
def num_tokens_from_text(cls, text, model="gpt-3.5-turbo"):
"""Returns the number of tokens used by some text."""
encoding = tiktoken.encoding_for_model(model)
return len(encoding.encode(text))
@classmethod
def num_tokens_from_messages(cls, messages, model="gpt-3.5-turbo"):
"""Returns the number of tokens used by a list of messages."""
encoding = tiktoken.encoding_for_model(model)
num_tokens = 0
for message in messages:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
@retrying.retry(stop_max_attempt_number=5, wait_fixed=2000)
def _msg(self, *args, model=Model.GPT3_5.value, **kwargs):
return openai.ChatCompletion.create(
*args,
model=model,
messages=self._history,
**kwargs
)
def message(self, next_msg=None, **kwargs):
# TODO: Optimize this if slow through easy caching
while len(self._history) > 1 and self.num_tokens_from_messages(self._history) > self._max_length:
logger.info(f'Popping message: {self._history.pop(1)}')
if next_msg is not None:
self._history.append({"role": "user", "content": next_msg})
logger.info('requesting openai...')
resp = self._msg(**kwargs)
logger.info('received openai...')
text = resp.choices[0].message.content
self._history.append({"role": "assistant", "content": text})
return text
class Weather:
def __init__(self, zip_code='10001', api_key=weather_api_key):
self.zip_code = zip_code
self.api_key = api_key
@cachetools.func.ttl_cache(maxsize=128, ttl=15*60)
def get_weather(self):
lat, long = get_lat_long(self.zip_code)
url = f"https://forecast.weather.gov/MapClick.php?lat={lat:.2f}&lon={long:.2f}&unit=0&lg=english&FcstType=json"
headers = {'accept': 'application/json'}
return requests.get(url, headers=headers).json()
def get_info(self):
data = self.get_weather()
new_data = {}
new_data['now'] = data['currentobservation']
# The 'time' and 'data' keys seem to have hourly/daily data
# Assuming the first entry in these lists is for the current hour
new_data['hour'] = {
'time': data['time']['startValidTime'][0],
'tempLabel': data['time']['tempLabel'][0],
'temperature': data['data']['temperature'][0],
'pop': data['data']['pop'][0],
'weather': data['data']['weather'][0],
'iconLink': data['data']['iconLink'][0],
'text': data['data']['text'][0],
}
# And the rest of the 'time' and 'data' lists are for the rest of the day
new_data['day'] = {
'time': data['time']['startValidTime'][1:],
'tempLabel': data['time']['tempLabel'][1:],
'temperature': data['data']['temperature'][1:],
'pop': data['data']['pop'][1:],
'weather': data['data']['weather'][1:],
'iconLink': data['data']['iconLink'][1:],
'text': data['data']['text'][1:],
}
return new_data
class Image:
class Size(enum.Enum):
SMALL = "256x256"
MEDIUM = "512x512"
LARGE = "1024x1024"
@classmethod
@retrying.retry(stop_max_attempt_number=5, wait_fixed=2000)
def create(cls, prompt, n=1, size=Size.SMALL):
logger.info('requesting openai.Image...')
resp = openai.Image.create(prompt=prompt, n=n, size=size.value, response_format='b64_json')
logger.info('received openai.Image...')
if n == 1: return resp["data"][0]
return resp["data"]
def create_collage(image1, image2, image3, image4):
# assuming images are the same size
width, height = image1.size
new_img = PIL.Image.new('RGB', (2 * width, 2 * height))
# place images in collage image
new_img.paste(image1, (0,0))
new_img.paste(image2, (width, 0))
new_img.paste(image3, (0, height))
new_img.paste(image4, (width, height))
return new_img
def overlay_text_on_image(img, text, position, text_color=(255, 255, 255), box_color=(0, 0, 0, 128), decode=False):
# Convert the base64 string back to an image
if decode:
img_bytes = base64.b64decode(img)
img = PIL.Image.open(BytesIO(img_bytes))
# Get image dimensions
img_width, img_height = img.size
# Create a ImageDraw object
draw = PIL.ImageDraw.Draw(img)
# Reduce the font size until it fits the image width or height
l, r = 1, 50
while l < r:
font_size = (l + r) // 2
font = PIL.ImageFont.truetype(font_path, font_size)
left, upper, right, lower = draw.textbbox((0, 0), text, font=font)
text_width = right - left
text_height = lower - upper
if text_width <= img_width and text_height <= img_height:
l = font_size + 1
else:
r = font_size - 1
font_size = max(l-1, 1)
left, upper, right, lower = draw.textbbox((0, 0), text, font=font)
text_width = right - left
text_height = lower - upper
if position == 'top-left':
x, y = 0, 0
elif position == 'top-right':
x, y = img_width - text_width, 0
elif position == 'bottom-left':
x, y = 0, img_height - text_height
elif position == 'bottom-right':
x, y = img_width - text_width, img_height - text_height
else:
raise ValueError("Position should be 'top-left', 'top-right', 'bottom-left' or 'bottom-right'.")
# Draw a semi-transparent box around the text
draw.rectangle([x, y, x + text_width, y + text_height], fill=box_color)
# Draw the text on the image
draw.text((x, y), text, font=font, fill=text_color)
return img
class WeatherDraw:
def clean_text(self, weather_info):
chat = Chat("Given the following weather conditions, write a very small, concise plaintext summary that will overlay on top of an image.")
text = chat.message(str(weather_info))
return text
def generate_image(self, weather_info, **kwargs):
animal = random.choice(animals)
logger.info(f"Got animal {animal}")
chat = Chat(f'''
Given the following weather conditions, write a plaintext, short, and vivid description of an
adorable {animal} in the weather conditions doing an activity a human would do in these weather conditions.
Make sure to include a small background.
Only write the short description and nothing else.
Do not include specific numbers.'''.replace('\n', ' '))
description = chat.message(str(weather_info))
prompt = f'{description} In the style of {random.choice(art_styles)}'
logger.info(prompt)
img = Image.create(prompt, **kwargs)
return img["b64_json"], prompt
def step_one_forecast(self, weather_info, **kwargs):
img, txt = self.generate_image(weather_info, **kwargs)
# text = self.clean_text(weather_info)
# return overlay_text_on_image(img, text, 'bottom-left')
return img, txt
def weather_img(self, weather_data):
import io
# Create a new image with white background
image = PIL.Image.new('RGB', (256, 256), (255, 255, 255))
draw = PIL.ImageDraw.Draw(image)
# Load a font
font = PIL.ImageFont.truetype(font_path, 12)
# Draw text on the image
y_text = 5
items_to_display = {
'now': {'Temperature': weather_data['now']['Temp'],
'Condition': weather_data['now']['Weather'],},
'hour': {'Temperature': weather_data['hour']['temperature'],
'Condition': weather_data['hour']['weather']},
'day': {'High': max(weather_data['day']['temperature']),
'Low': min(weather_data['day']['temperature']),
'Condition': weather_data['day']['weather'][0]},
}
for category, values in items_to_display.items():
draw.text((5, y_text), category, font=font, fill=(0, 0, 0))
y_text += 15
for key, value in values.items():
text = f"{key}: {value}"
draw.text((10, y_text), text, font=font, fill=(0, 0, 0))
y_text += 15
# Download the weather condition icon for now, day and next hour
for index, time in enumerate(items_to_display.keys()):
if time == 'day':
icon_url = weather_data['day']['iconLink'][0]
elif time == 'now':
icon_url = 'https://forecast.weather.gov/newimages/medium/'+weather_data['now']['Weatherimage']
else:
icon_url = weather_data[time]['iconLink']
print(time, icon_url)
response = requests.get(icon_url)
icon = PIL.Image.open(io.BytesIO(response.content))
# Resize the icon
icon = icon.resize((60, 60))
# Paste the icon on the image
image.paste(icon, (index*70 + 10, 190))
return image
def step(self, zip_code='10001', **kwargs):
forecast = Weather(zip_code).get_info()
images, texts = [], []
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as e:
runs = {}
for time, data in forecast.items():
if time == 'etc': continue
runs[e.submit(self.step_one_forecast, data, **kwargs)] = time, data
for r in concurrent.futures.as_completed(runs.keys()):
img, txt = r.result()
time, data = runs[r]
images.append(overlay_text_on_image(img, time, 'top-right', decode=True))
# images.append(overlay_text_on_image(img, '', 'top-right', decode=True))
texts.append(txt)
return create_collage(*images, self.weather_img(forecast)), *texts
# Define Gradio interface
iface = gr.Interface(fn=WeatherDraw().step,
inputs=gr.inputs.Textbox(label="Enter Zipcode"),
outputs=[gr.outputs.Image(type='pil'), "text", "text", "text", "text"],
title="US Zipcode Weather",
description="Enter a US Zipcode and get some weather.")
# Run the interface
iface.launch()