Spaces:
Runtime error
Runtime error
File size: 3,821 Bytes
562ccd6 9232135 562ccd6 bf27007 562ccd6 a8b401c 10692da a8b401c 06e7238 a8b401c 562ccd6 625231b bf27007 562ccd6 be2a07b 9232135 2b313b9 9232135 994d177 562ccd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import gradio as gr
import os
import gc
import json
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from collections import Counter
from sklearn.preprocessing import LabelEncoder
from keras.models import Model
from keras.regularizers import l2
from keras.constraints import max_norm
from keras.utils import to_categorical
from keras.preprocessing.text import Tokenizer
from keras.utils import pad_sequences
from keras.callbacks import EarlyStopping
from keras.layers import Input, Dense, Dropout, Flatten, Activation
from keras.layers import Conv1D, Add, MaxPooling1D, BatchNormalization
from keras.layers import Embedding, Bidirectional, LSTM, CuDNNLSTM, GlobalMaxPooling1D
import tensorflow as tf
from huggingface_hub import hf_hub_url, cached_download
class Sequence:
codes = {c: i+1 for i, c in enumerate(['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y'])}
@classmethod
def integer_encoding(cls, data):
"""
- Encodes code sequence to integer values.
- 20 common amino acids are taken into consideration
and remaining four are categorized as 0.
"""
return np.array([cls.codes.get(code, 0) for code in data])
@classmethod
def prepare(cls, sequence):
sequence = sequence.strip().upper()
ie = cls.integer_encoding(sequence)
max_length = 100
padded_ie = pad_sequences([ie], maxlen=max_length, padding='post', truncating='post')
all_ohe = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] + [0]*(100-21))
return to_categorical(np.array([padded_ie[0], all_ohe]))[:1]
def residual_block(data, filters, d_rate):
"""
_data: input
_filters: convolution filters
_d_rate: dilation rate
"""
shortcut = data
bn1 = BatchNormalization()(data)
act1 = Activation('relu')(bn1)
conv1 = Conv1D(filters, 1, dilation_rate=d_rate, padding='same', kernel_regularizer=l2(0.001))(act1)
#bottleneck convolution
bn2 = BatchNormalization()(conv1)
act2 = Activation('relu')(bn2)
conv2 = Conv1D(filters, 3, padding='same', kernel_regularizer=l2(0.001))(act2)
#skip connection
x = Add()([conv2, shortcut])
return x
def get_model():
# model
x_input = Input(shape=(100, 21))
#initial conv
conv = Conv1D(128, 1, padding='same')(x_input)
# per-residue representation
res1 = residual_block(conv, 128, 2)
res2 = residual_block(res1, 128, 3)
x = MaxPooling1D(3)(res2)
x = Dropout(0.5)(x)
# softmax classifier
x = Flatten()(x)
x_output = Dense(1000, activation='softmax', kernel_regularizer=l2(0.0001))(x)
model2 = Model(inputs=x_input, outputs=x_output)
model2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
weights = cached_download(hf_hub_url("jonathang/Protein_Family_CNN", 'model2.h5'))
model2.load_weights(weights)
return model2
model = get_model()
mappings_path = cached_download(hf_hub_url("jonathang/Protein_Family_CNN", 'prot_mappings.json'))
with open(mappings_path) as f:
prot_mappings = json.load(f)
def greet(Amino_Acid_Sequence):
processed_seq = Sequence.prepare(Amino_Acid_Sequence)
raw_prediction = model.predict(processed_seq)[0]
idx = raw_prediction.argmax()
fam_asc = prot_mappings['id2fam_asc'][str(idx)]
fam_id = prot_mappings['fam_asc2fam_id'][fam_asc]
gc.collect()
return f"Input is {Amino_Acid_Sequence}.\nProcessed input is:\n{processed_seq}\n\nModel makes prediction which maps to:\nFamily Accession={fam_asc} and ID={fam_id}\n\nRaw Prediction:\n{raw_prediction}\n"
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch() |