Johannes commited on
Commit
54e9b45
·
1 Parent(s): a5bc7b6
Files changed (2) hide show
  1. README.md +1 -1
  2. app.py +16 -3
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Borrowing Detection Es
3
  emoji: 🔍
4
  colorFrom: blue
5
  colorTo: purple
 
1
  ---
2
+ title: Borrowing Detection Español
3
  emoji: 🔍
4
  colorFrom: blue
5
  colorTo: purple
app.py CHANGED
@@ -18,6 +18,7 @@ diplacy_dict_template = {
18
  def infer(input_text):
19
  displacy_ents = []
20
  borrowings = nlp(input_text)
 
21
  for borrowing in borrowings:
22
  displacy_ent_dict = {
23
  "start": borrowing["start"],
@@ -28,9 +29,10 @@ def infer(input_text):
28
 
29
  colors = {"B-ENG": "linear-gradient(90deg, #aa9cfc, #fc9ce7)",
30
  "I-ENG": "linear-gradient(90deg, #99bfff, #a57cf0)",
31
- "OTHER": "linear-gradient(90deg, #79d0a5, #f6e395)"}
 
32
 
33
- options = {"ents": ["B-ENG", "I-ENG", "OTHER"], "colors": colors}
34
  displacy_dict_template = {"text": input_text, "ents": displacy_ents, "title": None}
35
 
36
  html = displacy.render(displacy_dict_template, style="ent", page=True, manual=True, options=options)
@@ -44,12 +46,23 @@ def infer(input_text):
44
  return html
45
 
46
 
 
 
 
 
 
 
 
 
47
  demo = gr.Interface(
48
  title="Borrowing Detection Español",
 
49
  fn=infer,
50
  inputs=gr.Text(),
51
  outputs=gr.HTML(),
52
- examples=["Buscamos data scientist para proyecto de machine learning."],
 
 
53
  )
54
 
55
  demo.launch()
 
18
  def infer(input_text):
19
  displacy_ents = []
20
  borrowings = nlp(input_text)
21
+
22
  for borrowing in borrowings:
23
  displacy_ent_dict = {
24
  "start": borrowing["start"],
 
29
 
30
  colors = {"B-ENG": "linear-gradient(90deg, #aa9cfc, #fc9ce7)",
31
  "I-ENG": "linear-gradient(90deg, #99bfff, #a57cf0)",
32
+ "B-OTHER": "linear-gradient(90deg, #79d0a5, #f6e395)",
33
+ "I-OTHER": "linear-gradient(90deg, #f79a76, #fb6d6d)"}
34
 
35
+ options = {"ents": ["B-ENG", "I-ENG", "B-OTHER", "I-OTHER"], "colors": colors}
36
  displacy_dict_template = {"text": input_text, "ents": displacy_ents, "title": None}
37
 
38
  html = displacy.render(displacy_dict_template, style="ent", page=True, manual=True, options=options)
 
46
  return html
47
 
48
 
49
+ description="""This space is a demo for the paper Detecting Unassimilated Borrowings in Spanish:
50
+ [An Annotated Corpus and Approaches to Modeling](https://arxiv.org/pdf/2203.16169.pdf)
51
+
52
+ The goal of the underlying model is to detect foreign words, e.g. anglicisms, in spanish texts.
53
+ In general it has two types of tags for foreign words: *ENG* and *OTHER*. The authors used BIO-tagging,
54
+ which is why in practice you will see a *B-* or *I-* in front of the tags.
55
+ """
56
+
57
  demo = gr.Interface(
58
  title="Borrowing Detection Español",
59
+ description=description,
60
  fn=infer,
61
  inputs=gr.Text(),
62
  outputs=gr.HTML(),
63
+ examples=["Buscamos data scientist para proyecto de machine learning.",
64
+ "Las fake news sobre la celebrity se reprodujeron por los 'mass media' en prime time.",
65
+ "Me gusta el cine noir y el anime."],
66
  )
67
 
68
  demo.launch()