johann22's picture
Update app.py
fa1a529 verified
raw
history blame
9.71 kB
import gradio as gr
import requests
import os
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
import uuid
import yt_dlp
import cv2
import whisper
from agent import (
PREFIX,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
)
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
#save_data=f'https://huggingface.co/datasets/{reponame}/raw/main/'
#token_self = os.environ['HF_TOKEN']
#api=HfApi(token=token_self)
sizes = list(whisper._MODELS.keys())
langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
current_size = "base"
loaded_model = whisper.load_model(current_size)
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 16000
def dl(inp,img):
uid=uuid.uuid4()
fps="Error"
out = None
out_file=[]
if img == None and inp !="":
try:
inp_out=inp.replace("https://","")
inp_out=inp_out.replace("/","_").replace(".","_").replace("=","_").replace("?","_")
#os.system(f'yt-dlp "{inp}" --trim-filenames 160 -o "{uid}/{inp_out}.mp4" -S res,mp4 --recode mp4')
os.system(f'yt-dlp --skip-download --write-subs --write-auto-subs --sub-lang en --sub-format ttml --convert-subs srt "{inp}" -o "{uid}/{inp_out}"')
f = open(f"{uid}/{inp_out}.en.srt")
ft=f.readlines()
line_fin=""
line_out=""
for line in ft:
if "<" in line:
line_out = line.split(">",1)[1].split("<",1)[0]
else:
line_out = line
if not line.strip("\n").isnumeric():
line_fin+=line_out
#print(ft)
#out = f"{uid}/{inp_out}.mp4"
#capture = cv2.VideoCapture(out)
#fps = capture.get(cv2.CAP_PROP_FPS)
#capture.release()
out=f'{line_fin}'
except Exception as e:
print(e)
out = None
elif img !=None and inp == "":
capture = cv2.VideoCapture(img)
fps = capture.get(cv2.CAP_PROP_FPS)
capture.release()
out = f"{img}"
return out
def csv(segments):
output = ""
for segment in segments:
output += f"{segment['start']},{segment['end']},{segment['text']}\n"
return output
def transcribe(path,lang,size):
yield (None,[("","Transcribing Video...")])
#if size != current_size:
loaded_model = whisper.load_model(size)
current_size = size
results = loaded_model.transcribe(path, language=lang)
subs = ".csv"
if subs == "None":
yield results["text"],[("","Transcription Complete...")]
elif subs == ".csv":
yield csv(results["segments"]),[("","Transcription Complete...")]
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
seed,
**prompt_kwargs,
):
print(seed)
timestamp=datetime.datetime.now()
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose="Compile the provided data and complete the users task"
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c, instruct, history, seed):
#seed=random.randint(1,1000000000)
print (f'c:: {c}')
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT_SMALL,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=16000,
seed=seed,
direction=instruct,
knowledge="",
history=hist,
)
out.append(resp)
#new_history = resp
#print (resp)
#out+=resp
e=e+chunk
s=s+chunk
return out
def compress_data_og(c, instruct, history, seed, MAX_DATA=MAX_DATA):
#seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
#print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=[],
max_tokens=16000,
seed=seed,
direction=instruct,
knowledge=new_history,
history=hist,
)
new_history = resp
print (resp)
#out+=resp
e=e+chunk
s=s+chunk-1000
print ("final" + resp)
#history = "observation: {}\n".format(resp)
return resp
def summarize(inp,history,mem_check,seed=None,data=None,MAX_DATA=MAX_DATA):
if seed==None or seed=="":
seed=random.randint(1,1000000000)
seed=int(seed)
json_box=[]
error_box=""
json_out={}
rawp="Error"
if inp == "":
inp = "Process this data"
history.clear()
history = [(inp,"Summarizing Transcription...")]
yield "",history,error_box,json_box
if data != "Error" and data != "" and data != None:
print(inp)
#out = str(data)
#rl = len(out)
#print(f'rl:: {rl}')
#c=1
#for i in str(out):
# #print(f'i:: {i}')
# if i == " " or i=="," or i=="\n" or i.isalpha()==True or i.isnumeric()==True:
# c +=1
#print (f'c:: {c}')
#json_out = compress_data(c,inp,out,seed)
#history = [(inp,"Generating Report...")]
#yield "", history,error_box,json_out
out = str(data)
print (out)
rl = len(out)
print(f'rl:: {rl}')
c=1
for i in str(out):
if i == " " or i=="," or i=="\n" or i.isalpha()==True or i.isnumeric()==True:
c +=1
print (f'c2:: {c}')
rawp = compress_data_og(c,inp,out,seed,MAX_DATA)
history.clear()
history.append((inp,rawp))
yield "", history,error_box,json_out
else:
rawp = "Provide a valid data source"
history.clear()
history.append((inp,rawp))
yield "", history,error_box,json_out
#################################
def clear_fn():
return "",[(None,None)]
with gr.Blocks() as app:
gr.HTML("""<center><h1>Video Summarizer</h1>""")
with gr.Row():
with gr.Column():
with gr.Row():
inp_url = gr.Textbox(label="Video URL")
url_btn = gr.Button("Load Video")
vid = gr.Video()
#trans_btn=gr.Button("Transcribe")
trans = gr.Textbox(interactive=True)
chatbot = gr.Chatbot(label="Mixtral 8x7B Chatbot",show_copy_button=True)
with gr.Row():
with gr.Column(scale=3):
prompt=gr.Textbox(label = "Instructions (optional)")
with gr.Column(scale=1):
mem_check=gr.Checkbox(label="Memory", value=False)
button=gr.Button()
with gr.Row():
out_slider=gr.Slider(minimum=1000, maximum=100000, step=1, value=MAX_DATA)
#models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
with gr.Row():
stop_button=gr.Button("Stop")
clear_btn = gr.Button("Clear")
with gr.Row():
sz = gr.Dropdown(label="Model Size", choices=sizes, value='base')
lang = gr.Dropdown(label="Language (Optional)", choices=langs, value="English")
json_out=gr.JSON()
e_box=gr.Textbox()
#text=gr.JSON()
#inp_query.change(search_models,inp_query,models_dd)
blank_text=gr.Textbox()
url_btn.click(dl,[inp_url,vid],trans)
#trans_btn.click(transcribe,[vid,lang,sz],trans)
clear_btn.click(clear_fn,None,[prompt,chatbot])
#go=button.click(transcribe,[vid,lang,sz],[trans,chatbot]).then(summarize,[prompt,chatbot,mem_check,trans],[prompt,chatbot,e_box,json_out])
go=button.click(summarize,[prompt,chatbot,mem_check,blank_text,trans,out_slider],[prompt,chatbot,e_box,json_out])
stop_button.click(None,None,None,cancels=[go])
app.queue(default_concurrency_limit=20).launch(show_api=True, show_error=True)