joaogante HF staff commited on
Commit
edce2eb
1 Parent(s): ac2cf21
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -36,16 +36,16 @@ if __name__ == "__main__":
36
  outputs = model.generate(
37
  **inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True, do_sample=True
38
  )
39
- # Important, don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
40
  transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
41
  transition_proba = np.exp(transition_scores)
42
  # We only have scores for the generated tokens, so pop out the prompt tokens
43
  input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
44
  generated_tokens = outputs.sequences[:, input_length:]
45
 
46
- # initialize the highlighted output with the prompt, which will have no color label
47
  highlighted_out = [(tokenizer.decode(token), None) for token in inputs.input_ids]
48
- # get the (decoded_token, label) pairs for the generated tokens
49
  for token, proba in zip(generated_tokens[0], transition_proba[0]):
50
  this_label = None
51
  assert 0. <= proba <= 1.0
@@ -70,7 +70,7 @@ if __name__ == "__main__":
70
  label="Highlighted generation",
71
  combine_adjacent=True,
72
  show_legend=True,
73
- ).style(color_map=label_to_color),
74
  button = gr.Button(f"Generate with {MODEL_NAME}")
75
 
76
  button.click(get_tokens_and_labels, inputs=prompt, outputs=highlighted_text)
 
36
  outputs = model.generate(
37
  **inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True, do_sample=True
38
  )
39
+ # Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
40
  transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
41
  transition_proba = np.exp(transition_scores)
42
  # We only have scores for the generated tokens, so pop out the prompt tokens
43
  input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
44
  generated_tokens = outputs.sequences[:, input_length:]
45
 
46
+ # Initialize the highlighted output with the prompt, which will have no color label
47
  highlighted_out = [(tokenizer.decode(token), None) for token in inputs.input_ids]
48
+ # Get the (decoded_token, label) pairs for the generated tokens
49
  for token, proba in zip(generated_tokens[0], transition_proba[0]):
50
  this_label = None
51
  assert 0. <= proba <= 1.0
 
70
  label="Highlighted generation",
71
  combine_adjacent=True,
72
  show_legend=True,
73
+ ).style(color_map=label_to_color)
74
  button = gr.Button(f"Generate with {MODEL_NAME}")
75
 
76
  button.click(get_tokens_and_labels, inputs=prompt, outputs=highlighted_text)