change demo from gpt2 to flan-t5
Browse files
app.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from transformers import
|
4 |
import numpy as np
|
5 |
|
6 |
|
7 |
-
MODEL_NAME = "
|
8 |
|
9 |
|
10 |
if __name__ == "__main__":
|
11 |
# Define your model and your tokenizer
|
12 |
-
tokenizer =
|
13 |
-
model =
|
14 |
if tokenizer.pad_token_id is None:
|
15 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
16 |
model.config.pad_token_id = model.config.eos_token_id
|
@@ -34,7 +34,7 @@ if __name__ == "__main__":
|
|
34 |
"""
|
35 |
inputs = tokenizer([prompt], return_tensors="pt")
|
36 |
outputs = model.generate(
|
37 |
-
**inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True
|
38 |
)
|
39 |
# Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
|
40 |
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
|
@@ -43,8 +43,11 @@ if __name__ == "__main__":
|
|
43 |
input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
|
44 |
generated_tokens = outputs.sequences[:, input_length:]
|
45 |
|
46 |
-
#
|
47 |
-
|
|
|
|
|
|
|
48 |
# Get the (decoded_token, label) pairs for the generated tokens
|
49 |
for token, proba in zip(generated_tokens[0], transition_proba[0]):
|
50 |
this_label = None
|
@@ -64,18 +67,18 @@ if __name__ == "__main__":
|
|
64 |
# π Color Coded Text Generation π
|
65 |
|
66 |
This is a demo of how you can obtain the probabilities of each generated token, and use them to
|
67 |
-
color code the model output.
|
68 |
-
|
69 |
-
|
70 |
-
Internally, it relies on [`compute_transition_scores`](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.compute_transition_scores),
|
71 |
which was added in `transformers` v4.26.0.
|
|
|
|
|
72 |
"""
|
73 |
)
|
74 |
|
75 |
with gr.Row():
|
76 |
with gr.Column():
|
77 |
-
prompt = gr.Textbox(label="Prompt", lines=3, value="
|
78 |
-
button = gr.Button(f"Generate with {MODEL_NAME}
|
79 |
with gr.Column():
|
80 |
highlighted_text = gr.HighlightedText(
|
81 |
label="Highlighted generation",
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
import numpy as np
|
5 |
|
6 |
|
7 |
+
MODEL_NAME = "google/flan-t5-base"
|
8 |
|
9 |
|
10 |
if __name__ == "__main__":
|
11 |
# Define your model and your tokenizer
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) # or AutoModelForCausalLM
|
14 |
if tokenizer.pad_token_id is None:
|
15 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
16 |
model.config.pad_token_id = model.config.eos_token_id
|
|
|
34 |
"""
|
35 |
inputs = tokenizer([prompt], return_tensors="pt")
|
36 |
outputs = model.generate(
|
37 |
+
**inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True
|
38 |
)
|
39 |
# Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
|
40 |
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
|
|
|
43 |
input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
|
44 |
generated_tokens = outputs.sequences[:, input_length:]
|
45 |
|
46 |
+
# On decoder-only models, you might want to initialize the highlighted output with the prompt (wo labels)
|
47 |
+
if model.config.is_encoder_decoder:
|
48 |
+
highlighted_out = []
|
49 |
+
else:
|
50 |
+
highlighted_out = [(tokenizer.decode(token), None) for token in inputs.input_ids]
|
51 |
# Get the (decoded_token, label) pairs for the generated tokens
|
52 |
for token, proba in zip(generated_tokens[0], transition_proba[0]):
|
53 |
this_label = None
|
|
|
67 |
# π Color Coded Text Generation π
|
68 |
|
69 |
This is a demo of how you can obtain the probabilities of each generated token, and use them to
|
70 |
+
color code the model output. Internally, it relies on
|
71 |
+
[`compute_transition_scores`](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.compute_transition_scores),
|
|
|
|
|
72 |
which was added in `transformers` v4.26.0.
|
73 |
+
|
74 |
+
π€ Feel free to clone this demo and modify it to your needs π€
|
75 |
"""
|
76 |
)
|
77 |
|
78 |
with gr.Row():
|
79 |
with gr.Column():
|
80 |
+
prompt = gr.Textbox(label="Prompt", lines=3, value="Translate to English: omelette du fromage")
|
81 |
+
button = gr.Button(f"Generate with {MODEL_NAME}")
|
82 |
with gr.Column():
|
83 |
highlighted_text = gr.HighlightedText(
|
84 |
label="Highlighted generation",
|