jmparejaz commited on
Commit
5b79a3b
·
1 Parent(s): 3828ac4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -40
app.py CHANGED
@@ -1,43 +1,7 @@
1
  import gradio as gr
2
- from huggingface_hub import from_pretrained_keras
3
- import numpy as np
4
 
5
- reloaded_model = from_pretrained_keras('jmparejaz/Facial_Age-gender-eth_Recognition')
6
- reloaded_model_eth = from_pretrained_keras('jmparejaz/Facial_eth_recognition')
7
 
8
- def rgb2gray(rgb):
9
- return np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140])
10
-
11
-
12
- def predict_model(x_, model_1, model_2):
13
- pred = model_1.predict(x_.reshape(x_.shape[0], 48, 48, 1))
14
- pred_eth=model_2.predict(x_.reshape(x_.shape[0], 48, 48, 1))
15
- pred_gender=[round(pred[0][x][0]) for x in range(x_.shape[0])]
16
- pred_age=[round(pred[1][x][0]) for x in range(x_.shape[0])]
17
- pred_eth=[np.argmax(pred_eth[x]) for x in range(x_.shape[0])]
18
-
19
- return pred_gender, pred_age, pred_eth
20
-
21
-
22
- def image_classifier(input_img):
23
- gray=rgb2gray(input_img)
24
- g,a,e=predict_model(gray.reshape(1, 48, 48, 1),reloaded_model,reloaded_model_eth)
25
-
26
- dict_gender={ 0: 'Male', 1:'Female'}
27
- g=dict_gender[g]
28
- dict_eth={0:"White", 1:"Black", 2:"Asian", 3:"Indian", 4:"Hispanic"}
29
- e=dict_eth[e]
30
- return ("The predicted gender is {} , predicted age is {} and the predicted ethnicity is {}".format(g,a,e))
31
-
32
-
33
-
34
-
35
- iface = gr.Interface(
36
- image_classifier,
37
- gr.inputs.Image(shape=(48, 48),),
38
- outputs=['text']
39
- capture_session=True,
40
- interpretation="default",
41
- )
42
-
43
- iface.launch(share=True)
 
1
  import gradio as gr
 
 
2
 
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
5
 
6
+ iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ iface.launch()