Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
from PIL import Image, ImageDraw | |
import torch | |
image_processor = AutoImageProcessor.from_pretrained('hustvl/yolos-small') | |
model = AutoModelForObjectDetection.from_pretrained('hustvl/yolos-small') | |
colors = ["red", | |
"orange", | |
"yellow", | |
"green", | |
"blue", | |
"indigo", | |
"violet", | |
"brown", | |
"black", | |
"slategray", | |
] | |
# Resized image width | |
WIDTH = 600 | |
def detect(image): | |
width, height = image.size | |
ratio = float(WIDTH) / float(width) | |
new_h = height * ratio | |
image = image.resize((int(WIDTH), int(new_h)), Image.Resampling.LANCZOS) | |
inputs = image_processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# convert outputs to COCO API | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = image_processor.post_process_object_detection(outputs, | |
threshold=0.9, | |
target_sizes=target_sizes)[0] | |
draw = ImageDraw.Draw(image) | |
# label and the count | |
counts = {} | |
for score, label in zip(results["scores"], results["labels"]): | |
label_name = model.config.id2label[label.item()] | |
if label_name not in counts: | |
counts[label_name] = 0 | |
counts[label_name] += 1 | |
count_results = {k: v for k, v in (sorted(counts.items(), key=lambda item: item[1], reverse=True)[:10])} | |
label2color = {} | |
for idx, label in enumerate(count_results): | |
label2color[label] = colors[idx] | |
for label, box in zip(results["labels"], results["boxes"]): | |
label_name = model.config.id2label[label.item()] | |
if label_name in count_results: | |
box = [round(i, 4) for i in box.tolist()] | |
x1, y1, x2, y2 = tuple(box) | |
draw.rectangle((x1, y1, x2, y2), outline=label2color[label_name], width=2) | |
draw.text((x1, y1), label_name, fill="white") | |
df = pd.DataFrame({ | |
'label': [label for label in count_results], | |
'counts': [counts[label] for label in count_results] | |
}) | |
return image, df, count_results | |
demo = gr.Interface( | |
fn=detect, | |
examples=["drone3.jpg"], | |
inputs=[gr.components.Image(label="Input image", type="pil")], | |
outputs=[gr.Image(label="Output image"), gr.BarPlot(show_label=False, x="counts", y="label", x_title="Counts", y_title="Labels", vertical=False)], | |
title="Bull Counter 2.0", | |
cache_examples=False | |
) | |
#, gr.Textbox(show_label=False) | |
demo.launch() |