jkorstad's picture
Update app.py
5e0039f verified
import gradio as gr
import spaces
import os
import torch
from transformers import AutoProcessor, MllamaForConditionalGeneration
from PIL import Image, ImageOps
import whisper
# Hugging Face token
hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
if not hf_token:
raise ValueError("HUGGING_FACE_HUB_TOKEN not found.")
# Model
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
model_name,
token=hf_token,
torch_dtype=torch.bfloat16,
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_name, token=hf_token)
@spaces.GPU
def predict(image, text):
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": text}
]}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(image, input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=250)
response = processor.decode(outputs[0], skip_special_tokens=True)
# Split the response at the first occurrence of "assistant" and return only the part after it
response = response.split("assistant", 1)[1].strip()
return response
# Whisper STT optional model
#@spaces.GPU
#def transcribe_audio(audio):
# result = whisper.transcribe(audio, model="base")
# return result["text"]
# Example photos and prompts
example_images = [
ImageOps.exif_transpose(Image.open("Illustration by @twentyone21___.jpg")),
ImageOps.exif_transpose(Image.open("Kynda Coffee.jpg")),
ImageOps.exif_transpose(Image.open("Cowboy Hat.jpg")),
ImageOps.exif_transpose(Image.open("Norway.JPG"))
]
example_prompts = ["Describe the photo",
"Search for the business name on his t-shirt to get a description of where the person is in Texas.",
"Describe the photo",
"Where do you think this photo was taken based on the architecture?"
]
# Gradio
demo = gr.Blocks()
with demo:
gr.Markdown("# Image Question Answering and Optional (WIP) Audio Transcription")
with gr.Tab("Image & Text Prompt"):
image_input = gr.Image(type="pil", label="Image Input")
text_input = gr.Textbox(label="Text Input")
output = gr.Textbox(label="Output")
gr.Button("Submit").click(predict, inputs=[image_input, text_input], outputs=output)
gr.Examples(examples=[[image, prompt] for image, prompt in zip(example_images, example_prompts)], inputs=[image_input, text_input])
# with gr.Tab("Audio Transcription (WIP) Prompt"):
# gr.load("models/openai/whisper-large-v3")
# audio_input = gr.Audio(label="Audio Input")
# text_output = gr.Textbox(label="Transcribed Text")
# gr.Button("Transcribe").click(transcribe_audio, inputs=audio_input, outputs=text_output)
# gr.Button("Submit").click(predict, inputs=[image_input, text_output], outputs=output)
demo.launch()