Update app.py
Browse files
app.py
CHANGED
@@ -8,17 +8,17 @@ import nltk
|
|
8 |
nltk.download("punkt")
|
9 |
raw_dataset = load_dataset("scientific_papers", "pubmed")
|
10 |
metric = evaluate.load("rouge")
|
11 |
-
model_checkpoint = "t5-small"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
13 |
|
14 |
-
if model_checkpoint in ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b"]:
|
15 |
prefix = "summarize: "
|
16 |
else:
|
17 |
prefix = ""
|
18 |
|
19 |
# preprocessing function
|
20 |
-
max_input_length =
|
21 |
-
max_target_length =
|
22 |
def preprocess_function(examples):
|
23 |
inputs = [prefix + doc for doc in examples["article"]]
|
24 |
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
|
@@ -31,23 +31,23 @@ def preprocess_function(examples):
|
|
31 |
return model_inputs
|
32 |
|
33 |
for split in ["train", "validation", "test"]:
|
34 |
-
raw_dataset[split] = raw_dataset[split].select([n for n in np.random.randint(0, len(raw_dataset[split]) - 1,
|
35 |
-
|
36 |
tokenized_dataset = raw_dataset.map(preprocess_function, batched=True)
|
37 |
|
|
|
38 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
39 |
|
40 |
-
batch_size =
|
41 |
|
42 |
args = Seq2SeqTrainingArguments(
|
43 |
f"{model_checkpoint}-scientific_papers",
|
44 |
evaluation_strategy="epoch",
|
45 |
-
learning_rate=
|
46 |
per_device_train_batch_size=batch_size,
|
47 |
per_device_eval_batch_size=batch_size,
|
48 |
weight_decay=0.01,
|
49 |
save_total_limit=3,
|
50 |
-
num_train_epochs=
|
51 |
predict_with_generate=True,
|
52 |
# fp16=True,
|
53 |
push_to_hub=False,
|
@@ -69,40 +69,35 @@ def compute_metrics(eval_pred):
|
|
69 |
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
70 |
# Extract a few results
|
71 |
result = {key: value * 100 for key, value in result.items()}
|
72 |
-
|
73 |
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]
|
74 |
result["gen_len"] = np.mean(prediction_lens)
|
75 |
return {k: round(v, 4) for k, v in result.items()}
|
76 |
|
77 |
-
|
78 |
-
# Define the training and evaluation datasets
|
79 |
-
train_dataset = tokenized_dataset["train"]
|
80 |
-
eval_dataset = tokenized_dataset["validation"]
|
81 |
-
|
82 |
-
# Create the trainer object
|
83 |
trainer = Seq2SeqTrainer(
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
90 |
)
|
91 |
-
|
92 |
-
# Train the model
|
93 |
trainer.train()
|
94 |
|
95 |
# Define the input and output interface of the app
|
|
|
|
|
96 |
def summarizer(input_text):
|
97 |
inputs = [prefix + input_text]
|
98 |
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True, return_tensors="pt")
|
99 |
summary_ids = model.generate(
|
100 |
input_ids=model_inputs["input_ids"],
|
101 |
attention_mask=model_inputs["attention_mask"],
|
102 |
-
num_beams=
|
103 |
-
length_penalty=2.
|
104 |
max_length=max_target_length + 2, # +2 from original because we start at step=1 and stop before max_length
|
105 |
-
repetition_penalty=
|
106 |
early_stopping=True,
|
107 |
use_cache=True
|
108 |
)
|
@@ -119,4 +114,3 @@ iface = gr.Interface(
|
|
119 |
theme="gray"
|
120 |
)
|
121 |
iface.launch()
|
122 |
-
|
|
|
8 |
nltk.download("punkt")
|
9 |
raw_dataset = load_dataset("scientific_papers", "pubmed")
|
10 |
metric = evaluate.load("rouge")
|
11 |
+
model_checkpoint = "google/flan-t5-small"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
13 |
|
14 |
+
if model_checkpoint in ["google/flan-t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b"]:
|
15 |
prefix = "summarize: "
|
16 |
else:
|
17 |
prefix = ""
|
18 |
|
19 |
# preprocessing function
|
20 |
+
max_input_length = 512
|
21 |
+
max_target_length = 128
|
22 |
def preprocess_function(examples):
|
23 |
inputs = [prefix + doc for doc in examples["article"]]
|
24 |
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
|
|
|
31 |
return model_inputs
|
32 |
|
33 |
for split in ["train", "validation", "test"]:
|
34 |
+
raw_dataset[split] = raw_dataset[split].select([n for n in np.random.randint(0, len(raw_dataset[split]) - 1, 1_000)])
|
|
|
35 |
tokenized_dataset = raw_dataset.map(preprocess_function, batched=True)
|
36 |
|
37 |
+
|
38 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
39 |
|
40 |
+
batch_size = 8
|
41 |
|
42 |
args = Seq2SeqTrainingArguments(
|
43 |
f"{model_checkpoint}-scientific_papers",
|
44 |
evaluation_strategy="epoch",
|
45 |
+
learning_rate=2e-5,
|
46 |
per_device_train_batch_size=batch_size,
|
47 |
per_device_eval_batch_size=batch_size,
|
48 |
weight_decay=0.01,
|
49 |
save_total_limit=3,
|
50 |
+
num_train_epochs=1,
|
51 |
predict_with_generate=True,
|
52 |
# fp16=True,
|
53 |
push_to_hub=False,
|
|
|
69 |
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
70 |
# Extract a few results
|
71 |
result = {key: value * 100 for key, value in result.items()}
|
72 |
+
# Add mean generated length
|
73 |
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]
|
74 |
result["gen_len"] = np.mean(prediction_lens)
|
75 |
return {k: round(v, 4) for k, v in result.items()}
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
trainer = Seq2SeqTrainer(
|
78 |
+
model,
|
79 |
+
args,
|
80 |
+
train_dataset=tokenized_dataset["train"],
|
81 |
+
eval_dataset=tokenized_dataset["validation"],
|
82 |
+
data_collator=data_collator,
|
83 |
+
tokenizer=tokenizer,
|
84 |
+
compute_metrics=compute_metrics
|
85 |
)
|
|
|
|
|
86 |
trainer.train()
|
87 |
|
88 |
# Define the input and output interface of the app
|
89 |
+
import gradio as gr
|
90 |
+
|
91 |
def summarizer(input_text):
|
92 |
inputs = [prefix + input_text]
|
93 |
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True, return_tensors="pt")
|
94 |
summary_ids = model.generate(
|
95 |
input_ids=model_inputs["input_ids"],
|
96 |
attention_mask=model_inputs["attention_mask"],
|
97 |
+
num_beams=4,
|
98 |
+
length_penalty=2.0,
|
99 |
max_length=max_target_length + 2, # +2 from original because we start at step=1 and stop before max_length
|
100 |
+
repetition_penalty=2.0,
|
101 |
early_stopping=True,
|
102 |
use_cache=True
|
103 |
)
|
|
|
114 |
theme="gray"
|
115 |
)
|
116 |
iface.launch()
|
|