test2 / app.py
jjuarez's picture
Update app.py
637db95
import gradio as gr
from datasets import load_dataset
import evaluate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer
import numpy as np
import nltk
nltk.download("punkt")
raw_dataset = load_dataset("scientific_papers", "pubmed")
metric = evaluate.load("rouge")
model_checkpoint = "google/flan-t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
if model_checkpoint in ["google/flan-t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b"]:
prefix = "summarize: "
else:
prefix = ""
# preprocessing function
max_input_length = 512
max_target_length = 128
def preprocess_function(examples):
inputs = [prefix + doc for doc in examples["article"]]
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
# Setup the tokenizer for targets
# with tokenizer.as_target_tokenizer():
labels = tokenizer(text_target=examples["abstract"], max_length=max_target_length, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
for split in ["train", "validation", "test"]:
raw_dataset[split] = raw_dataset[split].select([n for n in np.random.randint(0, len(raw_dataset[split]) - 1, 1_000)])
tokenized_dataset = raw_dataset.map(preprocess_function, batched=True)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
batch_size = 4
args = Seq2SeqTrainingArguments(
f"{model_checkpoint}-scientific_papers",
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
weight_decay=0.01,
save_total_limit=3,
num_train_epochs=1,
predict_with_generate=True,
# fp16=True,
push_to_hub=False,
gradient_accumulation_steps=2
)
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
# computing metrics from the predictions
def compute_metrics(eval_pred):
predictions, labels = eval_pred
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Rouge expects a newline after each sentence
decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]
decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
# Extract a few results
result = {key: value * 100 for key, value in result.items()}
# Add mean generated length
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]
result["gen_len"] = np.mean(prediction_lens)
return {k: round(v, 4) for k, v in result.items()}
trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
# Define the input and output interface of the app
import gradio as gr
def summarizer(input_text):
inputs = [prefix + input_text]
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True, return_tensors="pt")
summary_ids = model.generate(
input_ids=model_inputs["input_ids"],
attention_mask=model_inputs["attention_mask"],
num_beams=4,
length_penalty=2.0,
max_length=max_target_length + 2, # +2 from original because we start at step=1 and stop before max_length
repetition_penalty=2.0,
early_stopping=True,
use_cache=True
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
# Interface creation and launching
iface = gr.Interface(
fn=summarizer,
inputs=gr.inputs.Textbox(label="Input Text"),
outputs=gr.outputs.Textbox(label="Summary"),
title="Scientific Paper Summarizer",
description="Summarizes scientific papers using a fine-tuned T5 model",
theme="gray"
)
iface.launch()