Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,8 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
import bitsandbytes
|
5 |
from unsloth import FastLanguageModel
|
6 |
-
from transformers import TextStreamer, StoppingCriteriaList, StoppingCriteria
|
7 |
-
|
8 |
-
"""
|
9 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
10 |
-
"""
|
11 |
-
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
|
13 |
|
14 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
@@ -20,90 +16,6 @@ model, tokenizer = FastLanguageModel.from_pretrained(
|
|
20 |
|
21 |
FastLanguageModel.for_inference(model)
|
22 |
|
23 |
-
'''
|
24 |
-
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
25 |
-
|
26 |
-
### Instruction:
|
27 |
-
{}
|
28 |
-
|
29 |
-
### Input:
|
30 |
-
{}
|
31 |
-
|
32 |
-
### Response:
|
33 |
-
{}"""
|
34 |
-
|
35 |
-
def texto_Patol(input):
|
36 |
-
FastLanguageModel.for_inference(model)
|
37 |
-
inputs = tokenizer(
|
38 |
-
[
|
39 |
-
alpaca_prompt.format(
|
40 |
-
input, # instruction
|
41 |
-
"", # input
|
42 |
-
"", # output - leave this blank for generation!
|
43 |
-
)
|
44 |
-
], return_tensors = "pt")
|
45 |
-
#.to("cuda")
|
46 |
-
|
47 |
-
outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True)
|
48 |
-
return tokenizer.batch_decode(outputs)
|
49 |
-
'''
|
50 |
-
|
51 |
-
"""
|
52 |
-
def respond(
|
53 |
-
message,
|
54 |
-
history: list[tuple[str, str]],
|
55 |
-
system_message,
|
56 |
-
max_tokens,
|
57 |
-
temperature,
|
58 |
-
top_p,
|
59 |
-
):
|
60 |
-
messages = [{"role": "system", "content": system_message}]
|
61 |
-
|
62 |
-
for val in history:
|
63 |
-
if val[0]:
|
64 |
-
messages.append({"role": "user", "content": val[0]})
|
65 |
-
if val[1]:
|
66 |
-
messages.append({"role": "assistant", "content": val[1]})
|
67 |
-
|
68 |
-
messages.append({"role": "user", "content": message})
|
69 |
-
|
70 |
-
response = ""
|
71 |
-
|
72 |
-
for message in client.chat_completion(
|
73 |
-
messages,
|
74 |
-
max_tokens=max_tokens,
|
75 |
-
stream=True,
|
76 |
-
temperature=temperature,
|
77 |
-
top_p=top_p,
|
78 |
-
):
|
79 |
-
token = message.choices[0].delta.content
|
80 |
-
|
81 |
-
response += token
|
82 |
-
yield response
|
83 |
-
|
84 |
-
"""
|
85 |
-
|
86 |
-
"""
|
87 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
88 |
-
"""
|
89 |
-
|
90 |
-
"""
|
91 |
-
demo = gr.ChatInterface(
|
92 |
-
respond,
|
93 |
-
additional_inputs=[
|
94 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
95 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
96 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
97 |
-
gr.Slider(
|
98 |
-
minimum=0.1,
|
99 |
-
maximum=1.0,
|
100 |
-
value=0.95,
|
101 |
-
step=0.05,
|
102 |
-
label="Top-p (nucleus sampling)",
|
103 |
-
),
|
104 |
-
],
|
105 |
-
)
|
106 |
-
"""
|
107 |
class StopOnTokens(StoppingCriteria):
|
108 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
109 |
stop_ids = [29, 0]
|
@@ -116,13 +28,27 @@ def predict(message, history):
|
|
116 |
history_transformer_format = history + [[message, ""]]
|
117 |
stop = StopOnTokens()
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]])
|
120 |
for item in history_transformer_format])
|
121 |
|
122 |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
123 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
124 |
generate_kwargs = dict(
|
125 |
-
model_inputs
|
126 |
streamer=streamer,
|
127 |
max_new_tokens=2048,
|
128 |
#do_sample=True,
|
@@ -143,17 +69,4 @@ def predict(message, history):
|
|
143 |
|
144 |
gr.ChatInterface(predict).launch(debug=True)
|
145 |
|
146 |
-
|
147 |
-
demo = gr.Interface(fn=texto_Patol,
|
148 |
-
inputs=[gr.Textbox(label="Ingresa una pregunta acerca de Patología", lines=2)],
|
149 |
-
outputs=[gr.HighlightedText(label="Respuesta")],
|
150 |
-
title="Chat de Patología en Español",
|
151 |
-
description="Utiliza la primera versión del modelo ajustado Patologia_lora_model1 haciendo preguntas de patología",
|
152 |
-
allow_flagging="never",
|
153 |
-
#Here we introduce a new tag, examples, easy to use examples for your application
|
154 |
-
examples=["¿Cuál es el mecanismo de acción del crizotinib?", "Cuál es la mutación accionable más frecuente en cáncer de mama"])
|
155 |
-
demo.launch(share=True, debug=True)
|
156 |
-
"""
|
157 |
-
|
158 |
-
#if __name__ == "__main__":
|
159 |
-
# demo.launch()
|
|
|
3 |
import torch
|
4 |
import bitsandbytes
|
5 |
from unsloth import FastLanguageModel
|
6 |
+
from transformers import TextStreamer, StoppingCriteriaList, StoppingCriteria, TextIteratorStreamer
|
7 |
+
from threading import Thread
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
|
|
16 |
|
17 |
FastLanguageModel.for_inference(model)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
class StopOnTokens(StoppingCriteria):
|
20 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
21 |
stop_ids = [29, 0]
|
|
|
28 |
history_transformer_format = history + [[message, ""]]
|
29 |
stop = StopOnTokens()
|
30 |
|
31 |
+
'''
|
32 |
+
inputs = tokenizer(
|
33 |
+
[
|
34 |
+
alpaca_prompt.format(
|
35 |
+
message, # instruction
|
36 |
+
"", # input
|
37 |
+
"", # output - leave this blank for generation!
|
38 |
+
)
|
39 |
+
], return_tensors = "pt").to("cuda")
|
40 |
+
|
41 |
+
text_streamer = TextStreamer(tokenizer)
|
42 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 2048)
|
43 |
+
'''
|
44 |
+
|
45 |
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]])
|
46 |
for item in history_transformer_format])
|
47 |
|
48 |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
49 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
50 |
generate_kwargs = dict(
|
51 |
+
model_inputs,
|
52 |
streamer=streamer,
|
53 |
max_new_tokens=2048,
|
54 |
#do_sample=True,
|
|
|
69 |
|
70 |
gr.ChatInterface(predict).launch(debug=True)
|
71 |
|
72 |
+
gr.close_all()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|