Spaces:
Runtime error
Runtime error
import gradio as gr | |
#from huggingface_hub import InferenceClient | |
import torch | |
import bitsandbytes | |
from unsloth import FastLanguageModel | |
from transformers import TextStreamer, StoppingCriteriaList, StoppingCriteria, TextIteratorStreamer | |
from threading import Thread | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name = "jjsprockel/Patologia_lora_model1", | |
max_seq_length = 2048, | |
dtype = None, | |
load_in_4bit = True, | |
) | |
FastLanguageModel.for_inference(model) | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [29, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def predict(message, history): | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) | |
for item in history_transformer_format]) | |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=2048, | |
#do_sample=True, | |
#top_p=0.95, | |
#top_k=1000, | |
#temperature=1.0, | |
#num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
gr.ChatInterface(predict).launch(debug=True) |