jjsprockel's picture
Update app.py
d2c1087 verified
raw
history blame
1.78 kB
import gradio as gr
#from huggingface_hub import InferenceClient
import torch
import bitsandbytes
from unsloth import FastLanguageModel
from transformers import TextStreamer, StoppingCriteriaList, StoppingCriteria, TextIteratorStreamer
from threading import Thread
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "jjsprockel/Patologia_lora_model1",
max_seq_length = 2048,
dtype = None,
load_in_4bit = True,
)
FastLanguageModel.for_inference(model)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [29, 0]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def predict(message, history):
history_transformer_format = history + [[message, ""]]
stop = StopOnTokens()
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]])
for item in history_transformer_format])
model_inputs = tokenizer([messages], return_tensors="pt")
#.to("cuda")
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=2048,
#do_sample=True,
#top_p=0.95,
#top_k=1000,
#temperature=1.0,
#num_beams=1,
stopping_criteria=StoppingCriteriaList([stop])
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
if new_token != '<':
partial_message += new_token
yield partial_message
gr.ChatInterface(predict).launch(debug=True)