File size: 7,615 Bytes
938e515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Benchmarks
Here we benchmark the training speed of a Mask R-CNN in detectron2,
with some other popular open source Mask R-CNN implementations.
### Settings
* Hardware: 8 NVIDIA V100s with NVLink.
* Software: Python 3.7, CUDA 10.1, cuDNN 7.6.5, PyTorch 1.5,
TensorFlow 1.15.0rc2, Keras 2.2.5, MxNet 1.6.0b20190820.
* Model: an end-to-end R-50-FPN Mask-RCNN model, using the same hyperparameter as the
[Detectron baseline config](https://github.com/facebookresearch/Detectron/blob/master/configs/12_2017_baselines/e2e_mask_rcnn_R-50-FPN_1x.yaml)
(it does no have scale augmentation).
* Metrics: We use the average throughput in iterations 100-500 to skip GPU warmup time.
Note that for R-CNN-style models, the throughput of a model typically changes during training, because
it depends on the predictions of the model. Therefore this metric is not directly comparable with
"train speed" in model zoo, which is the average speed of the entire training run.
### Main Results
```eval_rst
+-------------------------------+--------------------+
| Implementation | Throughput (img/s) |
+===============================+====================+
| |D2| |PT| | 62 |
+-------------------------------+--------------------+
| mmdetection_ |PT| | 53 |
+-------------------------------+--------------------+
| maskrcnn-benchmark_ |PT| | 53 |
+-------------------------------+--------------------+
| tensorpack_ |TF| | 50 |
+-------------------------------+--------------------+
| simpledet_ |mxnet| | 39 |
+-------------------------------+--------------------+
| Detectron_ |C2| | 19 |
+-------------------------------+--------------------+
| `matterport/Mask_RCNN`__ |TF| | 14 |
+-------------------------------+--------------------+
.. _maskrcnn-benchmark: https://github.com/facebookresearch/maskrcnn-benchmark/
.. _tensorpack: https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN
.. _mmdetection: https://github.com/open-mmlab/mmdetection/
.. _simpledet: https://github.com/TuSimple/simpledet/
.. _Detectron: https://github.com/facebookresearch/Detectron
__ https://github.com/matterport/Mask_RCNN/
.. |D2| image:: https://github.com/facebookresearch/detectron2/raw/master/.github/Detectron2-Logo-Horz.svg?sanitize=true
:height: 15pt
:target: https://github.com/facebookresearch/detectron2/
.. |PT| image:: https://pytorch.org/assets/images/logo-icon.svg
:width: 15pt
:height: 15pt
:target: https://pytorch.org
.. |TF| image:: https://static.nvidiagrid.net/ngc/containers/tensorflow.png
:width: 15pt
:height: 15pt
:target: https://tensorflow.org
.. |mxnet| image:: https://github.com/dmlc/web-data/raw/master/mxnet/image/mxnet_favicon.png
:width: 15pt
:height: 15pt
:target: https://mxnet.apache.org/
.. |C2| image:: https://caffe2.ai/static/logo.svg
:width: 15pt
:height: 15pt
:target: https://caffe2.ai
```
Details for each implementation:
* __Detectron2__: with release v0.1.2, run:
```
python tools/train_net.py --config-file configs/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x.yaml --num-gpus 8
```
* __mmdetection__: at commit `b0d845f`, run
```
./tools/dist_train.sh configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py 8
```
* __maskrcnn-benchmark__: use commit `0ce8f6f` with `sed -i βs/torch.uint8/torch.bool/gβ **/*.py; sed -i 's/AT_CHECK/TORCH_CHECK/g' **/*.cu`
to make it compatible with PyTorch 1.5. Then, run training with
```
python -m torch.distributed.launch --nproc_per_node=8 tools/train_net.py --config-file configs/e2e_mask_rcnn_R_50_FPN_1x.yaml
```
The speed we observed is faster than its model zoo, likely due to different software versions.
* __tensorpack__: at commit `caafda`, `export TF_CUDNN_USE_AUTOTUNE=0`, then run
```
mpirun -np 8 ./train.py --config DATA.BASEDIR=/data/coco TRAINER=horovod BACKBONE.STRIDE_1X1=True TRAIN.STEPS_PER_EPOCH=50 --load ImageNet-R50-AlignPadding.npz
```
* __SimpleDet__: at commit `9187a1`, run
```
python detection_train.py --config config/mask_r50v1_fpn_1x.py
```
* __Detectron__: run
```
python tools/train_net.py --cfg configs/12_2017_baselines/e2e_mask_rcnn_R-50-FPN_1x.yaml
```
Note that many of its ops run on CPUs, therefore the performance is limited.
* __matterport/Mask_RCNN__: at commit `3deaec`, apply the following diff, `export TF_CUDNN_USE_AUTOTUNE=0`, then run
```
python coco.py train --dataset=/data/coco/ --model=imagenet
```
Note that many small details in this implementation might be different
from Detectron's standards.
<details>
<summary>
(diff to make it use the same hyperparameters - click to expand)
</summary>
```diff
diff --git i/mrcnn/model.py w/mrcnn/model.py
index 62cb2b0..61d7779 100644
--- i/mrcnn/model.py
+++ w/mrcnn/model.py
@@ -2367,8 +2367,8 @@ class MaskRCNN():
epochs=epochs,
steps_per_epoch=self.config.STEPS_PER_EPOCH,
callbacks=callbacks,
- validation_data=val_generator,
- validation_steps=self.config.VALIDATION_STEPS,
+ #validation_data=val_generator,
+ #validation_steps=self.config.VALIDATION_STEPS,
max_queue_size=100,
workers=workers,
use_multiprocessing=True,
diff --git i/mrcnn/parallel_model.py w/mrcnn/parallel_model.py
index d2bf53b..060172a 100644
--- i/mrcnn/parallel_model.py
+++ w/mrcnn/parallel_model.py
@@ -32,6 +32,7 @@ class ParallelModel(KM.Model):
keras_model: The Keras model to parallelize
gpu_count: Number of GPUs. Must be > 1
"""
+ super().__init__()
self.inner_model = keras_model
self.gpu_count = gpu_count
merged_outputs = self.make_parallel()
diff --git i/samples/coco/coco.py w/samples/coco/coco.py
index 5d172b5..239ed75 100644
--- i/samples/coco/coco.py
+++ w/samples/coco/coco.py
@@ -81,7 +81,10 @@ class CocoConfig(Config):
IMAGES_PER_GPU = 2
# Uncomment to train on 8 GPUs (default is 1)
- # GPU_COUNT = 8
+ GPU_COUNT = 8
+ BACKBONE = "resnet50"
+ STEPS_PER_EPOCH = 50
+ TRAIN_ROIS_PER_IMAGE = 512
# Number of classes (including background)
NUM_CLASSES = 1 + 80 # COCO has 80 classes
@@ -496,29 +499,10 @@ if __name__ == '__main__':
# *** This training schedule is an example. Update to your needs ***
# Training - Stage 1
- print("Training network heads")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=40,
- layers='heads',
- augmentation=augmentation)
-
- # Training - Stage 2
- # Finetune layers from ResNet stage 4 and up
- print("Fine tune Resnet stage 4 and up")
- model.train(dataset_train, dataset_val,
- learning_rate=config.LEARNING_RATE,
- epochs=120,
- layers='4+',
- augmentation=augmentation)
-
- # Training - Stage 3
- # Fine tune all layers
- print("Fine tune all layers")
- model.train(dataset_train, dataset_val,
- learning_rate=config.LEARNING_RATE / 10,
- epochs=160,
- layers='all',
+ layers='3+',
augmentation=augmentation)
elif args.command == "evaluate":
```
</details>
|