Spaces:
Runtime error
Runtime error
jitendra.kasaudhan
commited on
Commit
•
c22d94a
1
Parent(s):
693660f
Initial project setup with all the required steps to run the project
Browse files- app.py +100 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv, find_dotenv
|
2 |
+
from transformers import pipeline
|
3 |
+
from langchain import LLMChain, OpenAI, PromptTemplate
|
4 |
+
|
5 |
+
import requests
|
6 |
+
import os
|
7 |
+
|
8 |
+
# UI layer
|
9 |
+
import streamlit as st
|
10 |
+
|
11 |
+
load_dotenv(find_dotenv())
|
12 |
+
|
13 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
14 |
+
# It involves 3 steps
|
15 |
+
# image to text
|
16 |
+
def image_to_text(url, use_api=True):
|
17 |
+
if use_api:
|
18 |
+
API_URL = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
|
19 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
20 |
+
|
21 |
+
filename = url.split("/")[-1]
|
22 |
+
with open(filename, "rb") as f:
|
23 |
+
data = f.read()
|
24 |
+
response = requests.post(API_URL, headers=headers, data=data)
|
25 |
+
return response.json()[0]['generated_text']
|
26 |
+
|
27 |
+
|
28 |
+
# Download the model and use it, which is slow
|
29 |
+
captioner = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base")
|
30 |
+
# captioner("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
|
31 |
+
result = captioner(url)
|
32 |
+
return result[0]['generated_text']
|
33 |
+
|
34 |
+
## [{'generated_text': 'two birds are standing next to each other '}]
|
35 |
+
|
36 |
+
# LLM
|
37 |
+
def generate_story(story_idea):
|
38 |
+
template = """
|
39 |
+
You are a professional story teller;
|
40 |
+
Generate a short story based on a simple narrative, the story should be no more than 50 words;
|
41 |
+
CONTEXT: {story_idea}
|
42 |
+
STORY:
|
43 |
+
"""
|
44 |
+
prompt = PromptTemplate(input_variables=["story_idea"], template=template)
|
45 |
+
|
46 |
+
story_llm = LLMChain(llm=OpenAI(model_name='gpt-3.5-turbo-0301', temperature=1), prompt=prompt, verbose=True)
|
47 |
+
story = story_llm.run(story_idea)
|
48 |
+
return story
|
49 |
+
|
50 |
+
# text to speech
|
51 |
+
def text_to_speech(story):
|
52 |
+
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
53 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
54 |
+
|
55 |
+
payloads = {
|
56 |
+
"inputs": story
|
57 |
+
}
|
58 |
+
|
59 |
+
response = requests.post(API_URL, headers=headers, json=payloads)
|
60 |
+
with open("story_audio.flac", "wb") as file:
|
61 |
+
file.write(response.content)
|
62 |
+
|
63 |
+
# caption = image_to_text("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
|
64 |
+
# story = generate_story(story_idea="Two parrots singing a song")
|
65 |
+
# text_to_speech(story="Two parrots singing a song")
|
66 |
+
|
67 |
+
def main():
|
68 |
+
st.set_page_config(page_title="Upload any image to hear a nice story")
|
69 |
+
|
70 |
+
st.header("Listen to what your image has to tell you. JK DEMO APP")
|
71 |
+
|
72 |
+
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
73 |
+
if uploaded_file is not None:
|
74 |
+
print(uploaded_file)
|
75 |
+
bytes_data = uploaded_file.getvalue()
|
76 |
+
with open(uploaded_file.name, "wb") as file:
|
77 |
+
file.write(bytes_data)
|
78 |
+
|
79 |
+
st.image(uploaded_file, caption="Uploaded image", use_column_width=True)
|
80 |
+
|
81 |
+
image_description = image_to_text(uploaded_file.name, use_api=True)
|
82 |
+
|
83 |
+
# Display image description on FE
|
84 |
+
with st.expander("Image Description"):
|
85 |
+
st.write(image_description)
|
86 |
+
|
87 |
+
story = generate_story(story_idea=image_description)
|
88 |
+
story_starter_text = "Yo ho Radio Nepal, prastut xa sun nai parne katha: "
|
89 |
+
story = story_starter_text + story
|
90 |
+
|
91 |
+
# Display story text on FE
|
92 |
+
with st.expander("Story"):
|
93 |
+
st.write(story)
|
94 |
+
|
95 |
+
# Display audio player on FE
|
96 |
+
text_to_speech(story=story)
|
97 |
+
st.audio("story_audio.flac")
|
98 |
+
|
99 |
+
if __name__ == '__main__':
|
100 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python-dotenv
|
2 |
+
transformers
|
3 |
+
langchain
|
4 |
+
tensorflow
|
5 |
+
openai
|
6 |
+
streamlit
|